A lower bound for reversible automata
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Volume 34 (2000) no. 5, pp. 331-341.
@article{ITA_2000__34_5_331_0,
     author = {H\'eam, Pierre-Cyrille},
     title = {A lower bound for reversible automata},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {331--341},
     publisher = {EDP-Sciences},
     volume = {34},
     number = {5},
     year = {2000},
     mrnumber = {1829230},
     zbl = {0987.68043},
     language = {en},
     url = {http://www.numdam.org/item/ITA_2000__34_5_331_0/}
}
TY  - JOUR
AU  - Héam, Pierre-Cyrille
TI  - A lower bound for reversible automata
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 2000
SP  - 331
EP  - 341
VL  - 34
IS  - 5
PB  - EDP-Sciences
UR  - http://www.numdam.org/item/ITA_2000__34_5_331_0/
LA  - en
ID  - ITA_2000__34_5_331_0
ER  - 
%0 Journal Article
%A Héam, Pierre-Cyrille
%T A lower bound for reversible automata
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 2000
%P 331-341
%V 34
%N 5
%I EDP-Sciences
%U http://www.numdam.org/item/ITA_2000__34_5_331_0/
%G en
%F ITA_2000__34_5_331_0
Héam, Pierre-Cyrille. A lower bound for reversible automata. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Volume 34 (2000) no. 5, pp. 331-341. http://www.numdam.org/item/ITA_2000__34_5_331_0/

[1] D. Angluin, Inference of reversible languages. J. ACM 29 (1982) 741-765. | MR | Zbl

[2] J. Berstel, Transductions and Context-Free Languages. B.G. Teubner, Stuttgart (1979). | MR | Zbl

[3] M. Hall, A topology for free groups and related groups. Ann. of Math. 52 (1950). | MR | Zbl

[4] T. Hall, Biprefix codes, inverse semigroups and syntactic monoids of injective automata. Theoret. Comput. Sci. 32 (1984) 201-213. | MR | Zbl

[5] B. Herwig and D. Lascar, Extending partial automorphisms and the profinite topology on free groups. Trans. Amer. Math. Soc. 352 (2000) 1985-2021. | MR | Zbl

[6] S. Margolis and J. Meakin, Inverse monoids, trees, and context-free languages. Trans. Amer. Math. Soc. 335 (1993) 259-276. | MR | Zbl

[7] S. Margolis, M. Sapir and P. Weil, Closed subgroups in pro-V topologies and the extension problem for inverse automata. Preprint (1998). | MR

[8] S.W Margolis and J.-E. Pin, Languages and inverse semigroups, edited by J. Paredaens, Automata, Languages and Programming, 11th Colloquium. Antwerp, Belgium. Springer-Verlag, Lecture Notes in Comput. Sci. 172 (1984) 337-346. | MR | Zbl

[9] J.-E. Pin, Topologies for the free monoid. J. Algebra 137 (1991). | MR | Zbl

[10] J.-E. Pin, On reversible automata, edited by I. Simon, in Proc. of Latin American Symposium on Theoretical Informatics (LATIN '92). Springer, Berlin, Lecture Notes in Comput. Sci. 583 (1992) 401-416; A preliminary version appeared in the Proceedings of ICALP'87, Lecture Notes in Comput. Sci. 267. | MR

[11] P.V. Silva, On free inverse monoid languages. RAIRO: Theoret. Informatics Appl. 30 (1996) 349-378. | Numdam | MR | Zbl

[12] B. Steinberg, Finite state automata: A geometric approach. Technical Report, Univ. of Porto (1999).

[13] B. Steinberg, Inverse automata and profinite topologies on a free group. Preprint (1999). | MR