On the complexity of computable real sequences
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 21 (1987) no. 2, pp. 175-180.
@article{ITA_1987__21_2_175_0,
     author = {Tor\'an, Jacobo},
     title = {On the complexity of computable real sequences},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {175--180},
     publisher = {EDP-Sciences},
     volume = {21},
     number = {2},
     year = {1987},
     zbl = {0634.68032},
     mrnumber = {894709},
     language = {en},
     url = {http://www.numdam.org/item/ITA_1987__21_2_175_0/}
}
TY  - JOUR
AU  - Torán, Jacobo
TI  - On the complexity of computable real sequences
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 1987
DA  - 1987///
SP  - 175
EP  - 180
VL  - 21
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/item/ITA_1987__21_2_175_0/
UR  - https://zbmath.org/?q=an%3A0634.68032
UR  - https://www.ams.org/mathscinet-getitem?mr=894709
LA  - en
ID  - ITA_1987__21_2_175_0
ER  - 
Torán, Jacobo. On the complexity of computable real sequences. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 21 (1987) no. 2, pp. 175-180. http://www.numdam.org/item/ITA_1987__21_2_175_0/

1. O. Aberth, Computable Analysis, McGraw-Hill, New York, 1980. | Zbl 0461.03015

2. K. Ko and H. Friedman, Computational Complexity of Real Functions, Theoretical Computer Science, Vol. 20, 1982, pp. 323-352. | MR 666209 | Zbl 0498.03047

3. K. Ko, On the Definitions of Some Complexity Classes of Real Numbers, Math. Systems Theory, Vol. 16, 1983, pp. 95-109. | MR 696140 | Zbl 0529.03016

4. A. Mostowski, On Computable Real Sequences, Fund. Math., Vol. 44, 1957, pp. 37-51. | MR 91242 | Zbl 0079.24702

5. H. G. Rice, Recursive Real Numbers, Proc Amer. Math. Soc., Vol. 5, 1954, pp. 784-791. | MR 63328 | Zbl 0058.00602

6. R. M. Robinson, Review of R. Peter's Book, Rekursive Funktionen, J. Symbolic Logic, Vol. 16, 1951, pp. 280-282.

7. E. Specker, Nicht-Konstruktiv beweisbare Sätze des Analysis, J. Symbolic Logic, Vol. 14, 1949, pp. 145-158. | MR 31447 | Zbl 0033.34102

8. J. Torán, Computabilidad y complejidad computacional de algunos problemas del analisis real elemental, Tesina de la Universidad Complutense de Madrid. 1985.

9. A. M. Turing, On Computable Real Numbers with an Application to the Entscheidungs Problem, Proc. London Math. Soc., 1937, pp. 230-265. | JFM 62.1059.03