Every commutative quasirational language is regular
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 20 (1986) no. 3, pp. 319-337.
@article{ITA_1986__20_3_319_0,
     author = {Kortelainen, Juha},
     title = {Every commutative quasirational language is regular},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {319--337},
     publisher = {AFCET - Gauthier-Villars},
     address = {Paris},
     volume = {20},
     number = {3},
     year = {1986},
     zbl = {0617.68069},
     mrnumber = {894717},
     language = {en},
     url = {http://www.numdam.org/item/ITA_1986__20_3_319_0/}
}
TY  - JOUR
AU  - Kortelainen, Juha
TI  - Every commutative quasirational language is regular
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 1986
DA  - 1986///
SP  - 319
EP  - 337
VL  - 20
IS  - 3
PB  - AFCET - Gauthier-Villars
PP  - Paris
UR  - http://www.numdam.org/item/ITA_1986__20_3_319_0/
UR  - https://zbmath.org/?q=an%3A0617.68069
UR  - https://www.ams.org/mathscinet-getitem?mr=894717
LA  - en
ID  - ITA_1986__20_3_319_0
ER  - 
Kortelainen, Juha. Every commutative quasirational language is regular. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 20 (1986) no. 3, pp. 319-337. http://www.numdam.org/item/ITA_1986__20_3_319_0/

1. J.-M. Autebert, J. Beauquier, L. Boasson and M. Latteux, Very Small Families of Algebraic Nonrational Languages, in Formal Language Theory, Perspectives and Open Problems, R.V. BOOK, Ed., Academic Press, New York, 1980, pp. 89-107.

2. J. Berstel, Une hiérarchie des parties rationnelles de ℕ², Math. Systems Theory, Vol. 7, 1973, pp. 114-137. | MR 331872 | Zbl 0257.68078

3. J. Berstel, Transductions and Context-Free Languages, B. G. Teubner, Stuttgart, 1979. | MR 549481 | Zbl 0424.68040

4. J. Berstel and L. Boasson, Une suite décroissante de cônes rationnels, Lecture Notes Comput. Sc., Vol. 14, 1974, pp. 383-397. | MR 451876 | Zbl 0288.68037

5. A. Ehrenfeucht, D. Haussler and G. Rosenberg, Conditions enforcing reguiarity of context-free languages, Lecture Notes Comput. Sc.,Vol. 140, 1982, pp. 187-191. | MR 675456 | Zbl 0495.68068

6. S. Ginsburg, The Mathematical Theory of Context-Free Languages, McGraw Hill, New York, 1966. | MR 211815 | Zbl 0184.28401

7. M. Latteux, Cônes rationnels commutativement clos, R.A.I.R.O., Inform. Théor., Vol. 11, 1977, pp. 29-51. | Numdam | MR 478782 | Zbl 0354.68103

8. M. Latteux, Langages commutatifs, Thèse Sc. Math., Lille-I, 1978.

9. M. Latteux, Cônes rationnels commutatifs, J. Comput. System Sc., Vol. 18, 1979, pp. 307-333. | MR 536405 | Zbl 0421.68074

10. M. Latteux, Langages commutatifs, transductions rationnelles et intersection, Publication de l'Équipe Lilloise d'Informatique Théorique, IT 34.81, 1981.

11. M. Latteux and J. Leguy, On the usefulness of bifaithful rational cônes, Publication de l'Equipe Lilloise d'Informatique Théorique, IT 40.82, 1982.