@article{CTGDC_2002__43_2_107_0, author = {Gaucher, Philippe}, title = {About the globular homology of higher dimensional automata}, journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques}, pages = {107--156}, publisher = {Dunod \'editeur, publi\'e avec le concours du CNRS}, volume = {43}, number = {2}, year = {2002}, mrnumber = {1913102}, zbl = {1001.18003}, language = {en}, url = {http://www.numdam.org/item/CTGDC_2002__43_2_107_0/} }
TY - JOUR AU - Gaucher, Philippe TI - About the globular homology of higher dimensional automata JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques PY - 2002 SP - 107 EP - 156 VL - 43 IS - 2 PB - Dunod éditeur, publié avec le concours du CNRS UR - http://www.numdam.org/item/CTGDC_2002__43_2_107_0/ LA - en ID - CTGDC_2002__43_2_107_0 ER -
%0 Journal Article %A Gaucher, Philippe %T About the globular homology of higher dimensional automata %J Cahiers de Topologie et Géométrie Différentielle Catégoriques %D 2002 %P 107-156 %V 43 %N 2 %I Dunod éditeur, publié avec le concours du CNRS %U http://www.numdam.org/item/CTGDC_2002__43_2_107_0/ %G en %F CTGDC_2002__43_2_107_0
Gaucher, Philippe. About the globular homology of higher dimensional automata. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Volume 43 (2002) no. 2, pp. 107-156. http://www.numdam.org/item/CTGDC_2002__43_2_107_0/
[1] Aspects of multiple categories. PhD thesis, University of Wales, Department of Pure Mathematics, University College of North Wales, Bangor, Gwynedd LL57 1UT, U.K., September 1989.
[2] Geometry of loop spaces and the cobar construction. Mem. Amer: Math. Soc., 25(230):ix+171, 1980. | MR | Zbl
[3] The equivalence of ∞-groupoids and crossed complexes. Cahiers Topologie Géom. Differentielle, 22(4):371-386, 1981. | Numdam | Zbl
[4] On the algebra of cubes. J. Pure Appl. Algebra, 21 (3):233-260, 1981. | MR | Zbl
and[5] Simplicial methods and the interpretation of "triple" cohomology. Mem. Amer. Math. Soc., 3(issue 2, 163):v+135, 1975. | MR | Zbl
[6] Algebraic topology and concurrency. preprint, 1998. | MR
, , and[7] Detecting deadlocks in concurrent systems. In CONCUR'98: concurrency theory (Nice), pages 332-347. Springer, Berlin, 1998. | MR
, , and[8] Combinatorics of branchings in higher dimensional automata. preprint math.CT/9912059, 2000. | MR
[9] Homotopy invariants of higher dimensional categories and concurrency in computer science. Math. Structures Comput. Sci., 10(4):481-524, 2000. Geometry and concurrency. | MR | Zbl
[10] From concurrency to algebraic topology. In Jeremy Gunawardena Maurice Herlihy Martin Raussen Patrick Cousot, Eric Goubault and Vladimiro Sassone, editors, Electronic Notes in Theoretical Computer Science, volume 39. Elsevier Science Publishers, 2001. | MR | Zbl
[11] The Geometry of Concurrency. PhD thesis, Ecole Nor-male Supérieure, 1995.
[12] The combinatorics of n-categorical pasting. J. Pure Appl. Algebra, 62(3):211-225, 1989. | MR | Zbl
[13] Abstract homotopy and simple homotopy theory. World Scientific Publishing Co. Inc., River Edge, NJ, 1997. | MR | Zbl
and[14] Combinatorial-geometric aspects of polycategory theory: pasting schemes and higher Bruhat orders (list of results). Cahiers Topologie Geom. Differentielle Catégoriques, 32(1):11-27, 1991. International Category Theory Meeting (Bangor, 1989 and Cambridge, 1990). | Numdam | MR | Zbl
and[15] Categories for the working mathematician. Springer-Verlag, New York, second edition, 1998. | MR | Zbl
[16] Arrangements of hyperplanes, higher braid groups and higher Bruhat orders. In Algebraic number theory, pages 289-308. Academic Press, Boston, MA, 1989. | MR | Zbl
and[17] Simplicial Objects in Algebraic Topology. D. Van Nostrand Company, 1967. | MR | Zbl
[18] Iterated loop spaces. Ann. of Math. (2), 84:386-403, 1966. | MR | Zbl
[19] Modeling concurrency with geometry. In ACM Press, editor, Proc. of the 18th ACM Symposium on Principles of Programming Languages, 1991.
[20] Higher algebraic K-theory. I. pages 85-147. Lecture Notes in Math., Vol. 341, 1973. | MR | Zbl
[21] Classifying holes of arbitrary dimensions in partially ordered cubes. Technical report, Kansas State University, 1999.
[22] Tensor products of infinity-categories. University of Glasgow, 1991.
[23] The algebra of oriented simplexes. J. Pure Appl. Algebra, 49(3):283-335, 1987. | MR | Zbl
[24] Fillers for nerves. In Categorical algebra and its applications (Louvain-La-Neuve, 1987), pages 337-341. Springer, Berlin, 1988. | MR | Zbl