The Picard group and subintegrality in positive characteristic
Compositio Mathematica, Volume 95 (1995) no. 3, p. 309-321
@article{CM_1995__95_3_309_0,
     author = {Singh, Balwant},
     title = {The Picard group and subintegrality in positive characteristic},
     journal = {Compositio Mathematica},
     publisher = {Kluwer Academic Publishers},
     volume = {95},
     number = {3},
     year = {1995},
     pages = {309-321},
     zbl = {0858.13001},
     mrnumber = {1318090},
     language = {en},
     url = {http://www.numdam.org/item/CM_1995__95_3_309_0}
}
Singh, Balwant. The Picard group and subintegrality in positive characteristic. Compositio Mathematica, Volume 95 (1995) no. 3, pp. 309-321. http://www.numdam.org/item/CM_1995__95_3_309_0/

[1] H. Bass, Algebraic K-Theory, Benjamin, New York, 1968. | MR 249491 | Zbl 0174.30302

[2] B. Dayton, The Picard group of a reduced G-algebra, J. Pure Appl. Algebra 59 (1989) 237-253. | MR 1009681 | Zbl 0697.13004

[3] R. Gilmer and M.B. Martin, On the Picard group of a class of nonseminormal domains, Comm. Algebra 18 (1990) 3263-3293. | MR 1063976 | Zbl 0797.13012

[4] J.V. Leahy and M.A. Vitully, Seminormal graded rings and weakly normal projective varieties, Int. J. Math. Sci. 8 (1985) 231-240. | MR 797823 | Zbl 0593.13001

[5] H. Matsumura, Commutative Algebra, Benjamin-Cummings, New York (1980). | MR 575344 | Zbl 0441.13001

[6] Les Reid, Leslie G. Roberts and Balwant Singh, Finiteness of subintegrality, In P. G. Goerss and J. F. Jardine (eds.) Algebraic K-Theory and Algebraic Topology pp. 223-227, Kluwer Acad. Publ. 1993. | MR 1367300 | Zbl 0909.13004

[7] Les Reid,Leslie G. Roberts andBalwant Singh, Subintegrality, invertible modules and the Picard group, Compositio Math. 85 (1993) 249-279. | Numdam | Zbl 0782.13006

[8] R.G. Swan, On seminormality, J. Algebra 67 (1980) 210-229. | MR 595029 | Zbl 0473.13001