Initial layers of Z l -extensions of complex quadratic fields
Compositio Mathematica, Volume 32 (1976) no. 2, p. 157-168
@article{CM_1976__32_2_157_0,
     author = {Carroll, Joseph and Kisilevsky, H.},
     title = {Initial layers of $Z\_l$-extensions of complex quadratic fields},
     journal = {Compositio Mathematica},
     publisher = {Noordhoff International Publishing},
     volume = {32},
     number = {2},
     year = {1976},
     pages = {157-168},
     zbl = {0357.12003},
     mrnumber = {406970},
     language = {en},
     url = {http://www.numdam.org/item/CM_1976__32_2_157_0}
}
Carroll, J. E.; Kisilevsky, H. Initial layers of $Z_l$-extensions of complex quadratic fields. Compositio Mathematica, Volume 32 (1976) no. 2, pp. 157-168. http://www.numdam.org/item/CM_1976__32_2_157_0/

[1] Candiotti, ALAN: Thesis, Harvard University, 1973.

[2] Carroll, J.E.: On Determining the Quadratic Subfields of Z 2-extensions of Complex Quadratic Fields. Compositio Mathematica,30 (1975) 259-271. | Numdam | MR 374082 | Zbl 0314.12005

[3] Coates, John: On K2 and some Classical Conjectures in Algebraic Number Theory. Annals of Math. 95 (1972) 99-116. | MR 360523 | Zbl 0245.12005

[4] Greenberg, R.: On the Iwasawa Invariants of Totally Real Number Fields (to appear). | MR 401702 | Zbl 0334.12013

[5] Hasse, H.: Zahlentheorie, Akademie-Verlag, 1949. | MR 34400 | Zbl 0035.02002

[6] Iwasawa, K.: On Zl-extensions of Algebraic Number Fields. Annals of Math., series 2 (1973) (98) 187-326. | MR 349627 | Zbl 0285.12008

[7] Iwasawa, K.: A Note on the Class Numbers of Algebraic Number Fields. Abh. Math. Sem. Univ. Hamburg, 20 (1956) 257-58. | MR 83013 | Zbl 0074.03002

[8] Mazur, B.: private correspondence.

[9] Serre, J.P.: Classes des Corps Cyclotomiques. Seminaire Bourbaki, Dec. 1958. | Numdam | Zbl 0119.27603

[10] Scholz, A.: Idealklassen und Einheiten in Kubischen K├Ârper. Monatsh. Math. Phys. 30 (1933) 211-222. | JFM 59.0194.03 | Zbl 0007.00301