The Fredholm theory of integral equations for special types of compact operators on a separable Hilbert space
Compositio Mathematica, Volume 21 (1969) no. 1, pp. 59-80.
@article{CM_1969__21_1_59_0,
     author = {Brascamp, H. J.},
     title = {The {Fredholm} theory of integral equations for special types of compact operators on a separable {Hilbert} space},
     journal = {Compositio Mathematica},
     pages = {59--80},
     publisher = {Wolters-Noordhoff Publishing},
     volume = {21},
     number = {1},
     year = {1969},
     zbl = {0175.12201},
     mrnumber = {291889},
     language = {en},
     url = {http://www.numdam.org/item/CM_1969__21_1_59_0/}
}
TY  - JOUR
AU  - Brascamp, H. J.
TI  - The Fredholm theory of integral equations for special types of compact operators on a separable Hilbert space
JO  - Compositio Mathematica
PY  - 1969
DA  - 1969///
SP  - 59
EP  - 80
VL  - 21
IS  - 1
PB  - Wolters-Noordhoff Publishing
UR  - http://www.numdam.org/item/CM_1969__21_1_59_0/
UR  - https://zbmath.org/?q=an%3A0175.12201
UR  - https://www.ams.org/mathscinet-getitem?mr=291889
LA  - en
ID  - CM_1969__21_1_59_0
ER  - 
%0 Journal Article
%A Brascamp, H. J.
%T The Fredholm theory of integral equations for special types of compact operators on a separable Hilbert space
%J Compositio Mathematica
%D 1969
%P 59-80
%V 21
%N 1
%I Wolters-Noordhoff Publishing
%G en
%F CM_1969__21_1_59_0
Brascamp, H. J. The Fredholm theory of integral equations for special types of compact operators on a separable Hilbert space. Compositio Mathematica, Volume 21 (1969) no. 1, pp. 59-80. http://www.numdam.org/item/CM_1969__21_1_59_0/

F. Smithies [1] Integral equations; Cambridge Un. Press, Cambridge (1958). | JFM | MR | Zbl

A.C. Zaanen [2] Linear analysis; North Holland, Amsterdam and Noordhoff, Groningen (1953). | Zbl

R. Schatten [3] Norm ideals of completely continuous operators; Springer, Berlin (1960). | MR | Zbl

R. Bellman [4] Introduction to matrix analysis; McGraw-Hill, New York (1960). | MR | Zbl

E.C. Titchmarsh [5] Theory of Fourier integrals; Oxford Un. Press, Oxford (1937). | JFM | Zbl

E.C. Titchmarsh [6] Theory of functions; Oxford Un. Press, Oxford (1932). | MR | Zbl

S. Hartman and J. Mikusiński [7] The theory of Lebesgue measure and integration; Pergamon Press, Oxford (1961). | MR | Zbl

I. Fredholm [8] Sur une classe d'equations fonctionnelles; Acta Math. 27 (1903) 365-390. | JFM

J. Plemelj [9] Zur Theorie der Fredholmschen Funktionalgleichungen; Mh. Math. Phys. 15 (1904) 93-128. | JFM

A.F. Ruston [10] On the Fredholm theory of integral equations for operators belonging to the trace class of a general Banach space; Proc. Lond. Math. Soc. (2) 53 (1951) 109 -124. | Zbl

A.F. Ruston [11] ] Direct products of Banach spaces and linear functional equations; Proc. Lond. Math. Soc. (3) 1 (1953) 327-384. | MR | Zbl

A.F. Ruston [12] Formulae of Fredholm type for compact linear operators on a general Banach space; Proc. Lond. Math. Soc. (3) 3 (1953) 368-377. | MR | Zbl

T. Leżański [13] The Fredholm theory of linear equations in Banach spaces; Studia Math. 13 (1953) 244-276. | MR | Zbl

C. Van Winter and H.J. Brascamp [14] The n-body problem with spin-orbit or Coulomb interactions; Commun. Math. Phys. 11 (1968) 19-55. | MR

T. Carleman [15] Zur Theorie der linearen Integralgleichungen; Math. Z. 9 (1921) 196-217. | JFM | MR