@article{BSMF_1999__127_4_473_0,
author = {Iftimie, Drago\c{s}},
title = {The {3D} {Navier-Stokes} equations seen as a perturbation of the {2D} {Navier-Stokes} equations},
journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
pages = {473--517},
year = {1999},
publisher = {Soci\'et\'e math\'ematique de France},
volume = {127},
number = {4},
doi = {10.24033/bsmf.2358},
mrnumber = {2001e:35139},
zbl = {0946.35059},
language = {en},
url = {https://www.numdam.org/articles/10.24033/bsmf.2358/}
}
TY - JOUR AU - Iftimie, Dragoş TI - The 3D Navier-Stokes equations seen as a perturbation of the 2D Navier-Stokes equations JO - Bulletin de la Société Mathématique de France PY - 1999 SP - 473 EP - 517 VL - 127 IS - 4 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/bsmf.2358/ DO - 10.24033/bsmf.2358 LA - en ID - BSMF_1999__127_4_473_0 ER -
%0 Journal Article %A Iftimie, Dragoş %T The 3D Navier-Stokes equations seen as a perturbation of the 2D Navier-Stokes equations %J Bulletin de la Société Mathématique de France %D 1999 %P 473-517 %V 127 %N 4 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/bsmf.2358/ %R 10.24033/bsmf.2358 %G en %F BSMF_1999__127_4_473_0
Iftimie, Dragoş. The 3D Navier-Stokes equations seen as a perturbation of the 2D Navier-Stokes equations. Bulletin de la Société Mathématique de France, Tome 127 (1999) no. 4, pp. 473-517. doi: 10.24033/bsmf.2358
[1] . - Large-eigenvalue global existence and regularity results for the Navier-Stokes equation, J. Diff. Equations, t. 127, n° 2, 1996, p. 365-390. | Zbl | MR
[2] . - Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup., t. 14, n° 2, 1981, p. 209-246. | Zbl | MR | Numdam
[3] . - Remarques sur l'existence globale pour le système de Navier-Stokes incompressible, SIAM J. Math. Anal., t. 23, n° 1, 1992, p. 20-28. | Zbl | MR
[4] . - Fluides parfaits incompressibles, Astérisque, 230, 1995, p. 177. | Zbl | MR | Numdam
[5] , . - Flot de champs de vecteurs non lipschitziens et équations de Navier-Stokes, J. Diff. Equations, t. 121, n° 2, 1995, p. 314-328. | Zbl | MR
[6] , . - Littlewood-Paley and multiplier theory. - Springer-Verlag, Berlin, 1977. | Zbl | MR
[7] . - The resolution of the Navier-Stokes equations in anisotropic spaces, Rev. Mat. Iberoamericana, t. 15, n° 1, 1999. | Zbl | MR
[8] , , . - Asymptotic analysis of the Navier-Stokes equations in thin domains, Topol. Methods Nonlinear Anal., t. 10, n° 2, 1997, p. 249-282. | Zbl | MR
[9] , , , . - Global stability of large solutions to the 3D Navier-Stokes equations, Comm. Math. Phys., t. 159, n° 2, 1994, p. 329-341. | Zbl | MR
[10] , . - Navier-Stokes equations on thin 3D domains, I. Global attractors and global regularity of solutions, J. Amer. Math. Soc., t. 6, n° 3, 1993, p. 503-568. | Zbl | MR
[11] , . - Navier-Stokes equations on thin 3D domains, II. Global regularity of spatially periodic solutions, Nonlinear partial differential equations and their applications. - Collège de France Seminar, Vol. XI, Longman Sci. Tech., Harlow, 1994, p. 205-247. | Zbl | MR
[12] , . - Navier-Stokes equations in three-dimensional thin domains with various boundary conditions, Adv. Diff. Equations, t. 1, n° 4, 1996, p. 499-546. | Zbl | MR
[13] , . - Navier-Stokes equations in thin spherical domains, Optimization methods in partial differential equations (South Hadley, MA, 1996). - Amer. Math. Soc., Providence, RI, 1997, p. 281-314. | Zbl | MR
Cité par Sources :







