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THE 3D NAVIER-STOKES EQUATIONS

SEEN AS A PERTURBATION OF THE

2D NAVIER-STOKES EQUATIONS

PAR DRAGO§ IFTIMIE (*)

ABSTRACT. — We consider the periodic 3D Navier-Stokes equations and we take the
initial data of the form UQ = VQ + WQ, where VQ does not depend on the third variable. We
prove that, in order to obtain global existence and uniqueness, it suffices to assume that
[ [ WQ 1 1 x ̂ Pdholl^^^/^2) ^ ^^i where X is a space with a regularity H6 in the first two
directions and H ' ^ ~ in the third direction or, if 6 = 0, a space which is L2 in the first two

directions and B^ in the third direction. We also consider the same equations on the torus
with the thickness in the third direction equal to £ and we study the dependence on £ of the
constant C above. We show that if VQ is the projection of the initial data on the space of
functions independent of the third variable, then the constant C can be chosen independent
ofe.

RESUME. —— LES EQUATIONS DE NAVIER-STOKES 3D VUES COMME UNE PERTURBATION
DES EQUATIONS DE NAVIER-STOKES 2D. — On considere les equations de Navier-Stokes
periodiques 3D et on prend la donnee initiale de la forme UQ = VQ + WQ , ou VQ ne depend pas de
la troisieme variable. On demontre que, afin d'obtenir P existence et Punicite globale, il suffit
de supposer que ||wo||x e'x-p{\\vo\\22(rv•2\/^u'2'^ ^ ^^i ou ^ es^ un sspace avec une regularite
H6 dans les deux premieres directions et H 2 ~ dans la troisieme direction ou, si 6 == 0, un

espace qui est L2 dans les deux premieres directions et B^ dans la troisieme direction. On
considere aussi Ie meme systeme sur Ie tore avec une epaisseur e dans la troisieme direction et
on etudie la dependance de £ de la constante C ci-dessus. On trouve que, si VQ est la projection
de la donnee initiale sur Pespace des fonctions independantes de la troisieme variable, alors la
constante C peut etre choisie independante de e.

(*) Texte recu Ie 4 novembre 1997, revise Ie 2 fevrier 1998 et Ie 19 janvier 1999, accepte Ie 16
mars 1999.
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474 D. IFTIMIE

Introduction
The periodic 3D Navier-Stokes equations are the following:

{ 9tU + u • Vn — v^u = —Vp,

(N-S) div u(t,') = 0 for all t ̂  0,

U\t=Q = UQ.

Here, u(t,x) is a periodic time-dependent 3-dimensional vector-field. For the
sake of simplicity, we assume that the force is vanishing. This is not a serious
restriction, it is clear that the difficulty in solving these equations comes from
the non linear term. Similar results may be proved in the same way with a
force square-integrable in time with values in the right space. The choice of
periodic boundary conditions comes from the need to use the Fourier transform;
for this reason our methods do not trivially extend to other classical boundary
conditions.

It is well-known that in 2D, there exists a global unique solution for square-
integrable initial velocity. In larger dimensions, unless some symmetry is assu-
med, global existence and uniqueness of solutions is known to hold only for small
and more regular initial velocities. The goal of this paper is to prove global exis-
tence and uniqueness results by considering the 3D Navier-Stokes system as a
perturbation of the 2D system. To do that, we write the initial data as the sum
of a 2-dimensional initial part and a remainder. The main theorem says that, in
order to obtain global existence, it suffices to assume the remainder small, and
small compared to the 2-dimensional part.

Some stability results are already proved by G. Ponce, R. Racke, T.C. Sideris
and E.S. Titi in [9] but the norm of the remainder is not estimated and the
2-dimensional part of the initial data is assumed to be in H1 D L1 and not in
L2, the optimal assumption. This loss of regularity appears when they take the
product of a 2-dimensional function with a 3-dimensional function. This difficulty
is overwhelmed here by introducing anisotropic spaces, where the variables are
"separated". The loss of regularity is then optimal. Another advantage of these
spaces is that they are larger than the usual Sobolev spaces, hence we obtain in
the same time more general theorems.

It is natural to ask if the 3D Navier-Stokes equations on thin domains are close
to the 2D Navier-Stokes equations from the point of view of global existence and
uniqueness of solutions. A second aim of this work is to do the asymptotic study
of the Navier-Stokes equations on Tg = [0, 27ra] x [0,27rb\ x [0,27re] when e —> 0,
as was first considered by G. Raugel and G.R. Sell [II], [10] and, afterwards,
by J.D.Avrm [I], R. Temam and M. Ziane [12], [13] and I. Moise, R. Temam
and M. Ziane [8]. By asymptotic study, we mean proving global existence and
uniqueness of solutions for initial data in optimal sets, whose diameters should
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NAVIER-STOKES EQUATIONS 475

go to infinity when the slenderness of the domain goes to 0. To do that, it is
natural to work in spaces where the third variable is distinguished. It appears
that the anisotropic spaces are again well adapted to this study.

In an earlier paper [7], we proved global existence and uniqueness of solutions
for (N-S) in M3 with small initial data in

H6^6^ ^+^+^= j , _ j < ^ < j ,

a space which is H6i in the z-th direction. Here we apply in the periodic case
the work we have done there. The precise result is that there exists a positive
constant (7, independent of ^, such that if 0 < 6 < 1 and the initial data is
VQ +WQ with VQ independent of the third variable, then, in order to obtain global
existence and uniqueness of solutions, it suffices to assume that

(0.1) ||wo|kexp(^^)<^,

where X is a space which is H6 in the first two variables and H ^ ~ 6 in the third
variable, or, if 6 = 0, a space which is L2 in the first two variables and B^ in
the third variable, where B8 is the usual Besov space given by

B^ = [u e S' such that || 2^||A^||Lp||^ < oo},

where A^ is defined in (1.1). We shall also prove local existence and uniqueness
of solutions for arbitrary initial data in the spaces above.

In the third paragraph we work in Tg and we study the dependence on e of
the constant of inequality (0.1). We shall prove that if VQ is the projection of the
initial data on the space of functions independent of x^ and 0 < 6 < ^ , then the
constant C can be chosen independent of e. This will imply that global existence
and uniqueness is achieved as long as

(»-2) «•"»«»»<., ̂ (""î ) .̂.
The inequality above can be read in various ways. For instance, it is implied by

/ Ihol^cp) \ _i
ll^o||^i(Te)exp^—^ J ^ Cve 2 ,

or, for all a > 0, by

Ihollz^or2) < Cu(\ + ^-a\oge) and ||wo||^i(T^) < Cve~^^OL.
Finally, if one needs to have a larger VQ, one can take VQ arbitrarily large, the
price to pay is that WQ has to be assumed exponentially small with respect to
that VQ.

Let us compare this theorem with the previous results.
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476 D. IFTIMIE

The precise results of G. Raugel and G.R. Sell [II], [10] are rather complicated
so we give only an approximation: they consider various boundary conditions and
obtain global existence and uniqueness of solutions as long as

K||^i(T2) < Ce~5/24 and ||wo||^i(T,) <: C^-5748

or

KII^CP) < C^-17/32, ||^||L2(T2) < Ce^ and ||wo||^i(T,) < Ce-1/^
where v^ is the third component of VQ.

In the paper ofJ.D. Avrin [1] it is shown that ||no||^i ^ CX^1^ suffices in the
case of homogeneous Dirichlet boundary conditions; we denoted by Ai the first
eigenvalue of the Laplacian with homogeneous Dirichlet boundary conditions. In
the case of a thin domain, the equivalent of Avrin's result would be:

\\uo\\m<Ce-^.

Let us note that in the case of homogeneous Dirichlet boundary conditions the
2-dimensional part can not be defined, so one of the major difficulties of the
problem, mixture of 2D functions with 3D functions, does not appear.

I. Moise, R. Temam and M. Ziane [8] prove that it is sufficient to assume that

lho||^i(T2) < Ce~^6 and ||wo||^i(T,) ^ Ce~^6,
where 6 is a positive number.

Finally we mention that spherical domains are considered by R. Temam and
M. Ziane [13].

1. Notations and preliminary results
Many of the notations and the results from [7] remain valid here with minor

modifications; for those results, we shall only sketch the proofs. The main
differences are that we use the Littlewood-Paley theory in two variables instead
of three and we have to adjust to the periodic case the definition of the Ag
operators. We work in

T3 = [0, 27T] X [0, 27T] X [0, 27T]

and we denote by (^i^^s) = (x' ,x^) the variable in T3. All the functions are
assumed to have vanishing integral on T3. Let

L^'9 = {u such that ||n||Lp>9 = ||||n(a:)||^ || p < oo},
3 X '

and (p^ be the similar space for sequences. Obviously, when p = q^ the spaces
^^ and L^ are nothing else but the usual ( p and L^ spaces. The order of
integrations is important, as shown by the following remark (see [7]):
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NAVIER-STOKES EQUATIONS 477

REMARK 1.1. — Let (Xi,/^i), (Xa,/^) be two measure spaces, 1 < p < a and
f:XxY-.R.Then ~

||ll/(-^2)||^(X.^)||^^^) <. IIH/Ori, •)\\L^X^\\^^.

The Holder and Young inequalities for the L^ spaces take the form:

\\fg\\L?^ < \\fhpi^\\g\\Lp2^,
, 1 1 1 1 1 1where -= — + — , - = — + _,

P Pi P2 q qi Q2

\\f^h^<\\fh^\\g\\L^^
where 1 + - = — + —, l + 1 = J- + _L.

o' di a-z b &i 63

We denote by h * the operator of convolution with h.
If ZA is periodic, then it has a Fourier series

u(x) = ̂  Un exp(m • x), v,n € C.
nez3

For q > 0 and g7 > 0, we define

o' V^ / • \ /' \nf\\S^u= ̂  unexp(zrrx)^[-^-),
nGZ3

^=^exp(m.^(^),1»3|'

nez3

A^ =^-^_i = ̂  ^exp^n-.r)^^1—!^ Vg ̂  1,
nGZ3

(1.1) ^0 = ̂ 0 = ̂  ^(0,0,^3) ̂ (^S^s),
nsGZ

^ - ̂  - ̂ i = ̂  Hnexp(m • x)^^-^) Vg ̂  1,^q-i = ̂  Un exp(zn ' x)
nez3

^o = ^o = ̂  ^(n',0) exp^n'a:'),
n'ez2

,̂,, = ̂ ^/,, A,,,, = A,A^,

-9 = ^9,95 ^q = Sq — 6'g-i, AQ = SQ,

where ^:IR ̂  [0,1] is a smooth function such that supp^ c ] - l , l [ , ^ ^ l o n
[0, j], ^ is decreasing on [0, oo[, ^(|) = ^ and ^(a:) = ^(.r) - ̂ (2aQ/

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



478 D. IFTIMIE

Note that suppy? C ]^ ,1 [ and (p(x) > | for all a* € [ j ' |], With these
notations, the next inequality stems from Lemma 1.1 below:

(1.2) llywikpi^ < C^1-1/^^1-1/^2),

where (pq^ is given by A^g/ = (^g,g/*. The same holds for S q ^ q ' . Note that this
inequality is an extension of the classical equality

\^qhpW=C2d^-l/P\

where (pq is given by Ag = y?g*, Ag being the usual localization operator in R^
(see [2], [4]). It is important to use smooth cut-off functions; if we would use
characteristic functions of dyadic intervals, then inequality (1.2) would not hold
in the L1 case. For further details on the subject we refer to [6, Chap. 7].

LEMMA 1.1. — Let (f) be a compactly supported smooth function, X > l/(27r)
and

fW =^^(^)exp(m.z;).
n6Z

Then, for alll <_p <,oo and k € N there exist a constant C = C^^k) such that

||/(fc)||Lp^C7Afc+ l- l/^

where f^ is the k-th derivative of f.

Proof. — First we remark that we can restrict ourselves to the case k = 0.
Indeed, we have f^ = A^/c, where

9k(x) = ̂  ̂ k ( y ) exp(ma;) and ^k(x) = (zx^^x).
n

Interpolating L^ between -L1 and L00 shows that it suffices to consider the cases
p = 1 and p = oo. We have

\f{x)\<^ ^ <^)|^C7|H|L-A,
nGA supp 0

thus the case p = oo is proven.
Before going any further let us note that if A < l/(27r) then ||/||L00 is bounded

independently of A, hence so is ||/||L1. To estimate \\f\\L1 for A > l/(27r) we write

/^TT r1/^ /^Tr

II/ULI - / \f(x)\dx= \ \f(x)\dx+ / \f(x)\dx.
Jo Jo J i / x
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NAVIER-STOKES EQUATIONS 479

To estimate the first integral we use the bound on the sup norm of /:

/.I/A

/O

/.I/A -.

/ \f(x)\dx^~ ||/||̂  <CM^.
Jo A

In order to bound the second integral we use Abel's summation formula to
deduce that

exp(%(n + l)x) - exp(inx) / n -
— ————7——^——————————(f>[ —exp(za;) — 1 \ A >

/./ ^ _ v^ exp^n + L ) X ) - exp[znx) / n \
^ - 1. ————exp(^)-l————^IA)

_ ^ - ^ e x p ( m ^ ) r / n - l \ , /n \ - |
-I.exp^-li^-T-J'^lAJ}

V^ exp(m.r) ; ̂  - 2 ^ / ^ - i ^ /nx - i=>-(exp(^-l)2W^^)-20(^^)+0(A)^
Taylor's formula gives

/n-2\ ^ , /n - l \ / / ^ M C'
<^^)-2<-;-)+<A)1^'

for some constant (7 = C7(<^). Thus

ri/(.)id.<r y c^<c r^<c^ ' -
 y^ 1^.A2a;2 - x A/^2

 -G-

/.27T /.27T

' / /' t / l / A |n|<C'A

This completes the proof. []

As a corollary we find a Littlewood-Paley lemma in two variables:

LEMMA 1.2. — If u is a periodic function on T3 such that

supp£cB(0,Ai,A2) ̂  { ^ e R 3 such that |̂ | < A i , |̂ | <A2} ,

1 ^ ai ^ 61 ^ oo, 1 ^ 02 < &2 < oo one? a = (01,02,03) C N3 z5 a multi-index,
then

IÎ HL^ ^ ̂ A?1^2^1701-1/^3^1702-1/62)^!!^,,,.

Proof. — Recall that
U=(27T)3 ̂  U_»^.= (27T)3 ̂  U_A.

nez3
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480 D. IFTIMIE

Let
- . x -1- v-^ .. x / \n '\\ ( us \\
^,A.(^)=^^^exp^.^(^Jx(^J,

(27T)3 ^3 ^Ai^^

where ^ is defined immediately after relation (1.1). The localization of <^Ai,A2
and u implies that (f)\^^\^u = S, so

u = 0Ai,A2 *^-

Since

with

^Xi^W =^1(^)^2(^3)

^(a;/)=(^)2^EexP(m/•^(^)

and

^2(^3) = ̂  E exp(m3-rr3)x(^-),
?T-36Z

^2(^3)- ̂  ̂  ̂ .̂.., "^^As
nsCZ

applying Young's inequality and Lemma 1.1 yields

119^11^1^ ^ ||^°^,Aj| a.h, o.^ ||u||L°i,»2
^ 0,161+01—bi ' a2b2+a•2—62

. ^ai+a2+2(l/ai-l/bi)^Q3+(l/a2-l/b2)| i ||
_^ ^A^ A^ ||LA||^ai,a2 .

The proof is completed. []

DEFINITION 1.1. — We denote by M the operator given by

1 /l27r

Mu(x^,x^) = — / u(x)dx3= V -U(^o)exp(m' -a;').
^7r ^o /""ion'CZ2

It is easy to check that M, defined as a Fourier series, is the orthogonal
projection on the space of functions not depending on the third variable in every
Sobolev space H8.

When we will say that a possibly non-integrable function u has vanishing
mean we understand that ^(0,0,0) = 0- Similarly, vanishing mean in the third
direction refers to 'U(^Q) = 0 ^OT a^ ^' G Z2. Let us now introduce the first class
of spaces we shall use:
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NAVIER-STOKES EQUATIONS 481

DEFINITION 1.2. — We denote by H ^ 8 ' the space
H8-8' = [u e P'(T3) such that H^/ < 00},

where
N^.—lKi+Kn^i+nj)5'/2^^,

in which Un are the Fourier coefficients of the function u. The homogeneous
variant of this space is

H8-8 ={u^HS-s'andMu=Q}.
The following two lemmas are similar to Lemmas 1.2 and 1.3 from [7] and

give a characterization of H 8 ^ ' in terms of dyadic decomposition.
LEMMA 1.3. — If u € H8^' then

H.^^^^^IIA^^II^II^.
Proof. — Definition 1.1 implies that for all q,q' > 1

l|A^.||i.=(2.)3^|^|V(^)^(^).
n

Using the localization of (p we obtain

(L3) c, ^ Kl^i+lnWi+MT'
3•2'^-3^|TO'|^3-2''-2

3.3<t'-3<^^3^<,'-2

^^qs+2q's'\\^u\\^

<C2 E Kl^l+Kl^^l+lnsI2)8',
2q~2<\n/\<,2q

2<^/-2^|n3|^29/

for some constants d and (72. Similarly,

(L4) c7! E l^'^l^l + In' T < 229s||A,,o^||i.
329-3<|n /|<3•2(^-2

<^ E |^,^(1+|^|2)- V 9 > 1 ,

29-2^|^/|<29

and

(1.5) C, ^ l"(o,n3)12(l+l"3|2)s'^22(''s'||Ao,,^||i.
329 /-3<|n3|^329 /-2

^^2 E Ko^i+l^lT' v^> i .
29/-2<|n3|<29'

Using that Ao,o^ = ^0,0 and summing relations (1.3), (1.4) and (1.5) gives the
desired conclusion. []
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482 D. IFTIMIE

LEMMA 1.4. — IfUp^p> is a sequence of square integrable functions such that

suppup^ C {1/72^ ^ |^| < 72^ 1/72^ < |6| < 72^} forp.p' ^ 1,
suppz^o C {1/72^ < |̂ | < 72^ |6| < 7} forp ̂  I,

supp2o,p' C {|^| < 7, 1/72^ < |61 ^ 72^} forp1 ̂  1,
suppSo,o C {|^| < 7J61 ^ 7}^

/or some constant 7 > 1 and

\•ys+p's'\\u^\\^<^,
then

u=^Up^ ^ H 8 ^ and \u ,^ ^ G||2ps+p/s/||^p^||^2||^.
p,?'

• Ifs>0it suffices to assume that

suppS^/ C {|^| < 72^ 1/72^ < 161 ^ 72^}.

• If sf > 0 it suffices to assume that

suppS^ C {1/72^ < |^| < 72^ |61 < 72^}.

• If s > 0 and s' > 0 it suffices to assume that

supp^C {1^72^ 161^72^}.
Proof. — We prove the relevant case s > 0. Similar proofs work for the other

situations. We use that the operators A^g/ are bounded in L2 independently of
q and q ' , and the localization of A^g/ and Up^ to deduce the existence of an
integer N such that

2^^'S'||A^U||^ ^ 2^'s'^||Ag,g^||^

where

P,P
< \^ 9(9-P)«+(9/-P/)s9PS+p/s/|| i|
— 7 ^ z z ll^p'IlL2

p^g-TV
Ip'-g^TV

— QiQ7 Q^^ ^

^g^+g7^ ifg<^, 9'[ <7V,
^g^g' —— •\

. 0 otherwise,

'q.q' = ̂ ' ' ' s 11^9, q' \\L2-^w=29s+g/s/|k
Young's inequality yields

||2^+^||A^||^|^ < \\a^\\,. . ||̂ ||,2.

Since s > 0 one has \\dq^ ||^i < oo. Applying Lemma 1.3 completes the proof. []
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The next theorem as well as its proof is a variant of the product Theorem 1.1
from [7] which states that the product of a function from 7^1^2,53 ̂ ^ ^ function
from 7^2,<3 lies in 7^1+^1-l^2+A2- j , 53+^3- ^ provided that Si < J , t, < ̂
Si+ti >0 , % G {1,2,3}.

THEOREM 1.1.—Ze^ C T^5^, v € ^'^ 5HC/1 thats.t < 1, 5+^ > 0, s ' ^ < \
and s' -\-11 > 0. Then uv G Hs^~t~11s +* -^ anJ ^ere exists a constant C such
that

(L6) M^-i,^^-^ ^c7 • H^ • l ^ l t , ^ -
Sketch of the proof. — We use the following anisotropic equivalent of Bony's

decomposition:
uv = ( T ' + R' + r^r" + R" + r"),

where T ' and T' correspond to the 2-dimensional paraproducts, R' corresponds
to the 2-dimensional remainder and the double prime refers to the third variable.
For instance, the definition of the term T ' B" is

T'R'\u,v)= ̂  ̂ S,_^,uW_,v.
i=-l p^p'

The theorem holds for each of these operators under weaker assumptions. If a
term contains T ' then we have to assume that s < 1, if it contains W then
5^4-1 > 0 and if it contains T ' then t < 1. A similar rule holds for T " , R" and
T " . Let us prove that if s < 1 and s ' +1' > 0 then T'R'^u, v) (E ̂ ^-i^^'- ^ ^
We follow the proof of Theorem 1.1 from [7]. Let

w^ = S^^u^^^v.

Using several times the anisotropic form of Holder's inequality, the definition of
the operator S ' as well as the anisotropic Littlewood-Paley Lemma 1.2 one can
show that

(1.7) ||A^w^,||^ ^ 2^2||A^,w^, ||^,i

<2^/2 ^ 2r||A^A;^||^.||A,A;,_^||^,
r<p-2

(see [7]). Defining

a^ = 2^+^HA^H^, ^ = 2^+^/||A^||^
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484 D. IFTIMIE

and using that s < 1 yields

IIA /?/^ II r9 < r'99'/2 9P(1-S-A) 9-P/(S/+^) ||r, ,|L /i11^9,9 ^p,^ II-L2-^ uz z z iFp^H^ ' °p,p'-i^

whence

^^-^^^^-^HA^W^II^
^ ^q-p^S^t-l^q'-p^S+t')^ „ ,
^ v-^ — 11"'P,P 1 1 ^ ^p^p'—f

The localization of w^ / shows that an integer N exists so that \p — q\ < N and
q' < p ' + N , so

og^+^-^+g'^+^-^llA ,^^IB"(f\l ? ^ 1 1z 11^9 ,9 2 iT l^"? t ;/||L2
1

^ ^ V^ V^ c)(q1-p^s-^l'}^ || i<c Z^ ^ 2^ P A ^ 'll^p/H^ -^-z.
i=-l \p-q\^N

p > q ' - N

Taking the ̂  norm gives

12^s+t- l)+^(5/+t/- ^) HA^^r^"^, ̂ ) ||̂  ||̂

<^E E 2^-^(^)||a^||^.[[^_,||^.
i=-lp'>^-A^

Taking the ^, norm, applying Young's inequality and using that s ' + t' > 0
yields

l^^-1)^'^'- s) HA^^r^^, v)\\^ [|^
l

^ G E II ll^w 11^ • ll^p'-^ll^ll^i •
i=-l

Finally, Holder's inequality implies

^,(^-i)W(^-,)^^^,^^^^^^ ^ C7. ||a^[|^ . II^/H^,

that is
I^ML+,-1^-, < ̂ - H^ • H^.

This completes the proof for r'J?". The other terms can be bounded in the same
way. []
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NAVIER-STOKES EQUATIONS 485

We now add an interpolation property for these spaces:
PROPOSITION 1.1. — Let s^t^s'\t' be four real numbers^ a e [0,1] and

u C H8-8 n^< Then u <E H^^-^^^-^' and

Mas+^-QQ^Q's'+Cl-a)^ ^ Fl?,^ ' Wt^t' '

Proof. — We have from Holder's inequality that

MQ'S+^-a^QS'+^-Q:)^

= II (1 + Inf) ^ (-^(^^ (1 4- nj) ^ (-+(i—)^)u'njl^

^IKO+I^D^O+^^^nrll^

.IK(I+^^^(i+^y/2^)1-0!!^-.)
7/1°' , • I?;!1"0'a\s,sf \u\t,tf •

This completes the proof. []

We will need to estimate |V'u|s^ in terms of norms of u. The coming
proposition gives an useful equivalence.

PROPOSITION 1.2. — Let u be a periodic function on the three dimensional
torus with vanishing mean. The following norms are equivalent:

\^U\s,s^ Hs+1,^ + H^+i, SUp 1^+^,^+1-a.
o-e[o,i]

Proof. — Using the interpolation property, one sees that the norm

SUp |n|s+c^+l-a
a<E[0,l]

is equivalent to the norm
l^ls+l,^ + Hs^+l.

On the other hand, we have by definition that
|Vu|̂ , = \8,u\2^, + \9^u ̂ , + W^,

= ̂  (1 + K)2)^! + nlY\n2, + nj + nj)K|2

nCZ3

and that
i 2 i i2
^ s+l,^ + Ms^+l

= ^{(l+|n/|2)s+l(l+n|)s'+(l+ n/2)s(l+nj)5'+l}K|2

n6Z3

= E^+i^D'^+^^^^+^+^i^i2
nez3

Since '^(O,O,G) = 0, the conclusion follows. []
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If v C ^(T2) then one can write v G L^T3) by defining

^(^1,3:2^3) =v(^i,a:2).
It is obvious that

^ov = \v, Aq^v =0 if q' ^ 1.
It follows that, in the proof of Theorem 1.1 there is no loss on q 1 ' . This enables
us to modify that theorem as follows:

THEOREM 1.2. — Let v <E 7P(T2), w <E H^^ such that s < 1, t < 1 and
s + t > 0. r/ien

my e H3^-1^ anc? |z'w|s+t_i^/ ^ (7 • |v|s • |w|^.
Proof. — We treat x^ as a parameter and we use the decomposition of the

product vw as the sum of two-dimensional paraproducts and remainder:
(1.8) vw = TyW + R(v, w) + fyw,
where

'T,w=^^_^A^
p i

(1-9) - R^w)=^^A,vA,_^
i=-l p

r^w = T^v.
We prove that the theorem holds under weaker assumptions for each of these
operators. More precisely, we have the following

LEMMA 1.5. — There exists a constant C such that if T, R and T are the
operators defined above, then for all v e ̂ (T2) and w € ̂ 't/ we have

\TvW\s^t-i,f < C • \v s • \uJ\t,t' zfs < 1,

\TvW\s^t-i,t' <: C ' \v\s ' \w\t^ ift < 1,
_^, <: C • \v\s • \w\t^ if s+t> 0.

Proof. — Let us prove the assertion on T. We have

\R(v,v.w) s-{-t

||A^7>||^< ^ ||A^(^_^A;w)||^
|P-9|<1

= E II^^^^A^W)!!^
b-9l^i

< c E 11^-2^^W[|^
b-g|<i

^^E 11^-2^11^-||A^w||^.
h-gl^i
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Since v is two-dimensional and s < 1, we infer

\\^v\\^^C2^1-s^v\,.

Therefore

(1.10) IIA^r.wll^^1-5)^ ^ ||A^,w||^.
|p-g|^l

It remains to multiply by 29(s+t-l)+9/t/ and to take the £2 norm to obtain the
result on T.

We consider now the f term. The following sequence of inequalities holds:

(1.11) 1|A^7>||^<, ^ ||A^(A>^w)||^
b-9l<i

= E K(A^_^,W)||^
b-<?l^i

^ E ||A>^_^,w|^
|P-9|^1

^C ^ IIA^II^.H^A^II^,..
\p-q\<l

One can estimate

H^A^wll^^ < ^ ||A^w||^oo,2
r^p-2

^C ̂  2r||A^w||^
r^p-2

<C72-^ ^ 2r(l-A)||2^^/||A^,w||^||^
r<p-2

^^-^-^-1)^^^^^^^^^^

Thus

^(^-i)+^^^^^^^^

<C ^ 2^||A>||^||2^^||A^w||^||^.
|P-QJ<1

The conclusion for T now follows by taking the ^2 norm.
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Finally, we prove the assertion on R. One has

||A^(^w)||^<, ̂  ^ ||A^(A^Ap-^)L.
i=—lp>q-2

1

= E E l|A,(A>Ap_^w)||^
i=—lp^g-2

1

^E E 2^||A^A^^w||^,2
i=-lp>q-'2

1

^E E 2^||A^|M|Ap_^w||^.
i=-lp^g-2

It follows that

(1.12) 2^+A-l)+^/t/||A^,^,w)|^
i

< c E E 2^-^^)2^||A^||^ . 2^-^)^^/||A^_^w||^.
^=-1^^9-2

Applying Young's inequality completes the proof of Lemma 1.5. []

The decomposition (1.8) and Lemma 1.5 implies Theorem 1.2. []

In Section 2 we shall need to apply Theorem 1.2 in the case s > 1. The coming
inequality is a variant of an inequality proved by J.-Y. Chemin and N. Lerner
in [5]. It shows how to avoid this difficulty in some cases.

PROPOSITION 1.3. — There exists a constant C such that for all v e IP(T2)
and w such that divv = 0, Vw e H^^, s < 2, t < 1 and s + 1 > 0 there exists a
sequence (ciq,q>) such that

|(A^(^.Vw) |A^w)|

^ C^^-^-1)-^!^ . |Vw|^ . ||A^/w||^

and [|a^/||^2 = 1.

Proof. — We write

|(A^(^ . Vw) [ A^/w)| = |(A^(r^Vw) | A^/w)|

+|(A^(7?(^Vw)) A^w)|

+ |(A^(Tvw^) | A^w)|,
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