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THE 3D NAVIER-STOKES EQUATIONS
SEEN AS A PERTURBATION OF THE
2D NAVIER-STOKES EQUATIONS
PAR DRAGOS IFTIMIE (*)

ABSTRACT. — We consider the periodic 3D Navier-Stokes equations and we take the
initial data of the form wg = vg + wo, where vy does not depend on the third variable. We
prove that, in order to obtain global existence and uniqueness, it suffices to assume that
llwoll x exp([lvol2, T2)/C"2) < Cv, where X is a space with a regularity H® in the first two

directions and H 2 ~% in the third direction or, if § = 0, a space which is L2 in the first two
1

directions and 325,1 in the third direction. We also consider the same equations on the torus
with the thickness in the third direction equal to € and we study the dependence on € of the
constant C above. We show that if vg is the projection of the initial data on the space of
functions independent of the third variable, then the constant C' can be chosen independent
of €.

RESUME. — LES EQUATIONS DE NAVIER-STOKES 3D VUES COMME UNE PERTURBATION
DES EQUATIONS DE NAVIER-STOKES 2D. — On considére les équations de Navier-Stokes
périodiques 3D et on prend la donnée initiale de la forme up = vo +wo, ol vo ne dépend pas de
la troisi¢me variable. On démontre que, afin d’obtenir I’existence et 'unicité globale, il suffit
de supposer que ||lwol|x exp(||volliz(T2)/Cu2) < Cv, ou X est un espace avec une régularité

H? dans les deux premiéres directions et H 2 ~¢ dans la troisiéme direction ou, si 6 = 0, un

1
espace qui est L2 dans les deux premiéres directions et 325,1 dans la troisieme direction. On
considére aussi le méme systéme sur le tore avec une épaisseur € dans la troisieme direction et
on étudie la dépendance de € de la constante C ci-dessus. On trouve que, si vg est la projection
de la donnée initiale sur ’espace des fonctions indépendantes de la troisieme variable, alors la
constante C' peut étre choisie indépendante de .
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474 D. IFTIMIE

Introduction

The periodic 3D Navier-Stokes equations are the following:

ou+u-Vu—vAu = —Vp,
(N-S) divu(t,-) =0 forall¢t>0,

U|¢=0 = Uo-

Here, u(t,z) is a periodic time-dependent 3-dimensional vector-field. For the
sake of simplicity, we assume that the force is vanishing. This is not a serious
restriction, it is clear that the difficulty in solving these equations comes from
the non linear term. Similar results may be proved in the same way with a
force square-integrable in time with values in the right space. The choice of
periodic boundary conditions comes from the need to use the Fourier transform;
for this reason our methods do not trivially extend to other classical boundary
conditions.

It is well-known that in 2D, there exists a global unique solution for square-
integrable initial velocity. In larger dimensions, unless some symmetry is assu-
med, global existence and uniqueness of solutions is known to hold only for small
and more regular initial velocities. The goal of this paper is to prove global exis-
tence and uniqueness results by considering the 3D Navier-Stokes system as a
perturbation of the 2D system. To do that, we write the initial data as the sum
of a 2-dimensional initial part and a remainder. The main theorem says that, in
order to obtain global existence, it suffices to assume the remainder small, and
small compared to the 2-dimensional part.

Some stability results are already proved by G. Ponce, R. Racke, T.C. Sideris
and E.S. Titi in [9] but the norm of the remainder is not estimated and the
2-dimensional part of the initial data is assumed to be in H! N L! and not in
L2, the optimal assumption. This loss of regularity appears when they take the
product of a 2-dimensional function with a 3-dimensional function. This difficulty
is overwhelmed here by introducing anisotropic spaces, where the variables are
“separated”. The loss of regularity is then optimal. Another advantage of these
spaces is that they are larger than the usual Sobolev spaces, hence we obtain in
the same time more general theorems.

It is natural to ask if the 3D Navier-Stokes equations on thin domains are close
to the 2D Navier-Stokes equations from the point of view of global existence and
uniqueness of solutions. A second aim of this work is to do the asymptotic study
of the Navier-Stokes equations on T, = [0, 2ma] X [0, 27b] X [0, 27e] when & — 0,
as was first considered by G.Raugel and G.R.Sell [11], [10] and, afterwards,
by J.D. Avrin [1], R. Temam and M. Ziane [12], [13] and I. Moise, R. Temam
and M. Ziane [8]. By asymptotic study, we mean proving global existence and
uniqueness of solutions for initial data in optimal sets, whose diameters should
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NAVIER-STOKES EQUATIONS 475

go to infinity when the slenderness of the domain goes to 0. To do that, it is
natural to work in spaces where the third variable is distinguished. It appears
that the anisotropic spaces are again well adapted to this study.
In an earlier paper [7], we proved global existence and uniqueness of solutions
for (N-S) in R? with small initial data in
1

1 1
61,62,63 § § o= =y —= &; -,
H , 01+ 02+ 03 3 ) <0 < 5

a space which is H% in the i-th direction. Here we apply in the periodic case
the work we have done there. The precise result is that there exists a positive
constant C, independent of v, such that if 0 < § < 1 and the initial data is
vg +wo with vy independent of the third variable, then, in order to obtain global
existence and uniqueness of solutions, it suffices to assume that

“UO”%z(Tz)
Cv?

where X is a space which is H? in the first two variables and H 2% in the third

(0.1) l[wollx exp ( ) <Cv,

1
variable, or, if § = 0, a space which is L? in the first two variables and B3, in
the third variable, where B, , is the usual Besov space given by

B; , = {u € &' such that || 2°°||A;ul| s

where A;u is defined in (1.1). We shall also prove local existence and uniqueness
of solutions for arbitrary initial data in the spaces above.

In the third paragraph we work in T, and we study the dependence on ¢ of
the constant of inequality (0.1). We shall prove that if vg is the projection of the
initial data on the space of functions independent of z3 and 0 < § < %, then the
constant C' can be chosen independent of e. This will imply that global existence
and uniqueness is achieved as long as

”Eq < OO}’

”'UOH%z T2
(0.2) lwoll ;3 5, exP <c_y2(‘)) < Cw.

The inequality above can be read in various ways. For instance, it is implied by

l[voll3
lwo |l 2 (t. ) exp (%) < Cue‘%,

or, for all a > 0, by
lvoll 22y < Cv(1+ /—aloge) and [wolgi(r,) < Cre™ 2+

Finally, if one needs to have a larger vy, one can take vy arbitrarily large, the
price to pay is that wy has to be assumed exponentially small with respect to
that vg.

Let us compare this theorem with the previous results.
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476 D. IFTIMIE

The precise results of G. Raugel and G.R. Sell [11], [10] are rather complicated
so we give only an approximation: they consider various boundary conditions and
obtain global existence and uniqueness of solutions as long as

—5/24 —5/48

”’UO”HI('H‘Z) < Ce and ”’LUO”HI(']I‘E) < Ce

or
llvoll 2y < Ce™ 732, vl 212y < Ce® and |lwollerigr.y < Ce™ /3,

where v3 is the third component of vy.

In the paper of J.D. Avrin [1] it is shown that ||ug|| g1 < C)\l_l/4 suffices in the
case of homogeneous Dirichlet boundary conditions; we denoted by \; the first
eigenvalue of the Laplacian with homogeneous Dirichlet boundary conditions. In
the case of a thin domain, the equivalent of Avrin’s result would be:

llwol|zrr < Ce™ 3.

Let us note that in the case of homogeneous Dirichlet boundary conditions the
2-dimensional part can not be defined, so one of the major difficulties of the
problem, mixture of 2D functions with 3D functions, does not appear.

I. Moise, R. Temam and M. Ziane [8] prove that it is sufficient to assume that

-1 1
lvoll 1 (r2y < Ce™ 5+ and  |Jwolla(r,) < Ce™ 5+,

where § is a positive number.

Finally we mention that spherical domains are considered by R. Temam and
M. Ziane [13].

1. Notations and preliminary results

Many of the notations and the results from [7] remain valid here with minor
modifications; for those results, we shall only sketch the proofs. The main
differences are that we use the Littlewood-Paley theory in two variables instead
of three and we have to adjust to the periodic case the definition of the A,
operators. We work in

T2 = [0, 27] x [0, 27] x [0, 2]
and we denote by (1,72, 73) = (z',z3) the variable in T2. All the functions are
assumed to have vanishing integral on T3. Let

P9 = {u such that ||u||zr.« def |]||u(ac)||,;;3 ||Lp/ < oo},

and ¢P>7 be the similar space for sequences. Obviously, when p = ¢, the spaces
PP and LPP are nothing else but the usual /P and LP spaces. The order of
integrations is important, as shown by the following remark (see [7]):
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NAVIER-STOKES EQUATIONS 477

REMARK 1.1. — Let (X3, p1), (X2, u2) be two measure spaces, 1 < p < g and
f: X xY — R. Then
HHf( . ,x2)I|L”(X1,H1)”Lq(Xz,uz) < H“f(l‘l, . )“Lq(Xz,uz)HLp(Xl’”l).
The Holder and Young inequalities for the LP-9 spaces take the form:
Ifgllra < W fllovallgliLese,
1 1 1 1 1 1
where — = — + —) — = —
P N P2 g q1 q2
I * gllpar < [ fllpeseallgllzozzs

)

1
wherel+ - = — + — 14+ - = — 4+ —-
a

We denote by h* the operator of convolution with h.
If u is periodic, then it has a Fourier series

u(z) = Z un exp(in- ), wu, € C.
nez3

For ¢ > 0 and ¢’ > 0, we define

. n/
Sou = Z unexp(znw)x(%),
nezsd
Sy = Z u exp(inm)x(m)
q n 29 4
nezsd
A =S8 -8 _,= Zu exp(in - x) (m) Vg>1
q q q-1 n €Xp P\ 5q q=1,
nezs
(1.1) Ay =8y = Z U(0,0,n5) €XP(iN3T3),
n3€Z
. ng
M= Sy = Y wmesptin- (18] Vo1
nezsd
AY=Sg =D um o exp(in'z’),
n’EZz
Sq’q/ = S‘/I (II//, Aq,q' = A; ,q//,
Sq=5Sqq Dg=58—58¢-1, Ao =S50,

where x:R — [0, 1] is a smooth function such that suppx C ] —1,1[, x =1 on

[0, 3], x is decreasing on [0,00[, Xx(3) = 1 and ¢(z) = x(z) — x(2z).
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478 D. IFTIMIE

Note that suppy C ]3,1[ and (z) > 1 for all z € [2,3]. With these
notations, the next inequality stems from Lemma 1.1 below:

(1.2) I q.qllLres < C 22q(1—1/p1)+q/(1—1/p2),

where @, o is given by Ay ¢ = g.4*. The same holds for S, 4. Note that this
inequality is an extension of the classical equality

||90q||Lp(Rd) =C 2‘111(1—1/;7)’

where ¢, is given by A, = pg*, A4 being the usual localization operator in R4
(see [2], [4]). It is important to use smooth cut-off functions; if we would use
characteristic functions of dyadic intervals, then inequality (1.2) would not hold
in the L! case. For further details on the subject we refer to [6, Chap. 7].

LemMA 1.1. — Let ¢ be a compactly supported smooth function, A > 1/(2m)

and
Z ¢( ) exp(in).

nez
Then, for all1 < p < oo and k € N there ezist a constant C = C(¢,k) such that

IF®lze < OXFHIZUP,

where f*) is the k-th derivative of f.

Proof. — First we remark that we can restrict ourselves to the case k£ = 0.
Indeed, we have f(*¥) = A\*g,. where

Zwk( ) exp(inz) and Yy(z) = (ix)F(x).

Interpolating LP between L' and L™ shows that it suffices to consider the cases
p =1 and p = co. We have

f@l< Y |o(F)] < Cliglier,

nEAsupp ¢

thus the case p = oo is proven.

Before going any further let us note that if A\ < 1/(2) then || f|| L~ is bounded
independently of A, hence so is || f||L1. To estimate || f||z: for A > 1/(27) we write

27 1/ 27
1l = /0 |F(@)]da = /0 |F(@)|dz + / @)
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NAVIER-STOKES EQUATIONS 479

To estimate the first integral we use the bound on the sup norm of f:

1/ L
[ 15@laz < Jsles < Clolom.

In order to bound the second integral we use Abel’s summation formula to
deduce that

f(z) = Z exp(i(n + 1)z) — exp(inz) ¢( )

n
exp(iz) — 1 A
n
A

—Zei’,f‘lim) {o(*57) -o(3)}
=% e (5 -2 (5) +e(3)

Taylor’s formula gives

o("57) ~20("57) +o(5)] < 3o
for some constant C = C(¢). Thus
Cdz _C [*d
/ )| dz < /m x> oo < X/m = <c.

This completes the proof. []

As a corollary we find a Littlewood-Paley lemma in two variables:

LeEMMA 1.2. — If u is a periodic function on T3 such that
suppu C B(0,A1,\2) E {€ € R? such that [€'] < A1, |&] < )\2}

1<a; <b <o0,1<as<by <o and a=(a1,a2,a3) € N® is a multi-index,

then

1% Lor.on < C/\?l+a2+2(1/a1—l/bl))\ga+(1/a2_l/b2)“UHLaLaz

Proof. — Recall that

@=(2r)° > u_nbn.

n€ezd

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



480 D. IFTIMIE
Let » .
1 . n ns
P22:() = Gy nzeza expin - 2)x (35 )x( 35, )

where x is defined immediately after relation (1.1). The localization of 5,\17 A
and u implies that ¢, »,u = U, so

u= ¢)\1,)\2 * U.

Since
Daine (T) = P, ()P, (3)
with W
n
qS,\l( = 2 Z expm :v (2)‘1>
n! €72
and s
ns
i = 52 & et sn(5),

applying Young’s inequality and Lemma 1.1 yields

Haau“Lbl*tQ S ||8a¢/\1,/\2|| a1by azbo ||u||La1"12
L aibi+a1—b; azbz+az—bs

< C)\(i*q+a2+2(1/a1—l/bl))\gg—i—(l/ag—l/bz) ||'U:||La1,a2 )

The proof is completed. []

DerFINITION 1.1. — We denote by M the operator given by

1 2m
Mu(zq,z2) = %/ u(z)dzs = Z U(ns 0y €xp(in’ - z').
0

n'€Z?

It is easy to check that M, defined as a Fourier series, is the orthogonal
projection on the space of functions not depending on the third variable in every
Sobolev space H*.

When we will say that a possibly non-integrable function w has vanishing
mean we understand that w0y = 0. Similarly, vanishing mean in the third
direction refers to u(,: gy = 0 for all n' € Z2. Let us now introduce the first class
of spaces we shall use:
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NAVIER-STOKES EQUATIONS 481

DerFiNiTION 1.2. — We denote by H%*' the space
H> = {u € D'(T?) such that |u|s,s < 00},

where

fuls,s = [|(1+ I/ 2)*/2 (1 +n3)* | .,
in which u, are the Fourier coefficients of the function u. The homogeneous
variant of this space is

HS = {ue H*% and Mu = 0}.

The following two lemmas are similar to Lemmas 1.2 and 1.3 from [7] and
give a characterization of H*® in terms of dyadic decomposition.

LEmMA 1.3. — Ifu € H**' then
77
luls,s =~ '12q8+q ° ”Aq,q’uHLzHez'

Proof. — Definition 1.1 implies that for all ¢,¢' > 1
| |n3]
1Agquls = @m)* Y lunl2e? (57 )* (5 )-
n
Using the localization of ¢ we obtain

(1.3) i Y P+ ) (14 [nsf?)?
3.2973<|n’|<3-2972
329 3<|ns| <329 2

< 22qs+2q’s'”Aq’q,u”%2
<C 3 PR (1 + sl

2972< |’ <29
29" =2 <|ng|<29’

for some constants C; and Cs. Similarly,

(1.4) G Y fugg P+ 2)° < 22| A oull3
329-3<|n’|<3-29-2

<0 Y JuwolPA+17P) ve>1,
24-2<|n’[<24
and
(1.5) Ci Y [ty P(L+Insl?)” < 220%)|Ag ull2

324’ -3<|nz|<329 -2
< Cy Z [u0ms)|* (1 + |n3?)° Vg > 1.
24’ ~2< |ng| <29’

Using that Agou = 9,0 and summing relations (1.3), (1.4) and (1.5) gives the
desired conclusion. []
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482 D. IFTIMIE

LeMMA 1.4. — If u, v 45 a sequence of square integrable functions such that
supp iy, C {1/72° < |¢'] <72°, 1/927 < |gs| <42F'} forp,p > 1,
suppilp,0 C {1/72° < |¢'] <727, |&] < v} forp>1,
suppdo, C {|€'] <, 1/72" < |&s| <27’} forp' >1,
suppo,0 C {[€'] < v,l& < v},

for some constant v > 1 and
122577 (lup,pr || 2|2 < 00,
then ) .,
W= tpy € H* and |ulsy < ClI2P Y fup |-
p,p’
o If s > 0 it suffices to assume that
suppp,p C {[€] < 2P, 1/727 < |&s| <27’}
o If ' > 0 it suffices to assume that
supp Uy, C {1/'72p <€ < 2P, |€s] < 2P }
o If s> 0 and s’ > 0 it suffices to assume that
Supp Uy, C {1€'] < 727, |&5] < 72F }.

Proof. — We prove the relevant case s > 0. Similar proofs work for the other
situations. We use that the operators A, , are bounded in L? independently of
g and ¢’, and the localization of A4 4 and up, to deduce the existence of an
integer N such that

2qs+qISI“Aq,q’u”L2 < gasta’s’ Z 1Aq,q tupprll L2
p,p’

q—p)s+(q'—p')s 9ps+p’s’

< E 2 2 llup,p ll 22
p>2q—N
Ip'—q'|<N

= aq,q' *bg,q',

where .,
295+t4's jf g < N, ]q’| <N,
Qq,q =

0 otherwise,
b = 29 g
Young’s inequality yields
[[29°% 9% | Ag gl L2 || 2 < Nlagller - 1bg,qllez-

Since s > 0 one has [|aq,q¢ || < co. Applying Lemma 1.3 completes the proof. []
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NAVIER-STOKES EQUATIONS 483

The next theorem as well as its proof is a variant of the product Theorem 1.1
from [7] which states that the product of a function from H*®'-°2-°¢ with a function
from Hivt2ts lies in Ho Ha—2s2Ht2—3.s5+ta=3 provided that s; < 3,6t < 3,
si+t;>0,i€{1,2,3}.

THEOREM 1.1.— Let u € H5* v € HY such thats,t <1, s+t >0, ' ,t' < 3
and s’ + ' > 0. Then wv € H* =15+ =3 qnd there exists a constant C such

that

(1.6) 'uv's+t—1,5’+t’—% <C- |U|s,s’ : Ivlt,t"

Sketch of the proof. — We use the following anisotropic equivalent of Bony’s
decomposition: B B
uY = (T/ _|_ RI +T/)(T// _|_ R/I +T”),

where T’ and T" correspond to the 2-dimensional paraproducts, R’ corresponds
to the 2-dimensional remainder and the double prime refers to the third variable.
For instance, the definition of the term T'R" is

T'R"(u,v) = Z ZS’ QAp UL A v,

i=—1 p,p’

The theorem holds for each of these operators under weaker assumptions. If a
term contains 7" then we have to assume that s < 1, if it contains R’ then
s+t >0 and if it contains 7’ then ¢ < 1. A similar rule holds for 7", R” and
T". Let us prove that if s < 1 and s’ +¢' > 0 then T'R” (u,v) € H5Ht~1Ls'"+t'~3
We follow the proof of Theorem 1.1 from [7]. Let

o " N

Wy, = Sp_ o ApuN AL v

Using several times the anisotropic form of Holder’s inequality, the definition of

the operator S, as well as the anisotropic Littlewood-Paley Lemma 1.2 one can
show that

(L7) [ Agqwppyllze <2772 Agqwp 2
<22 3 AL ALl 1AL AY e,
r<p-2

(see [7]). Defining
ag.q =221 Ay gulliz,  beg =29V | Ag o) L2
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484 D. IFTIMIE

and using that s < 1 yields
1Aq, q’w e < €29 /2 gp(1=s=t) g=p'(s'+t)) llapp ||€°° bp,p—i»

whence

QU=+ =D A wd |2

_ _1 I_ / ’ ’
< 2P (sHt=1)+(a' —p)(s"+t )”ap,p’”ﬁ, “bp pr—i-

The localization of w;p, shows that an integer N exists so that |[p — ¢| < N and
qd <p + N, so

9a(s+t—1)+q'(s'+t' —2)HA T'R" (u,v)]| ..

<C Z Z 9@ =p")(s"+1 )llap,p'“lg by pr—i-

i=—1 |p—gq|<N
p'>q'—N

Taking the £2 norm gives

20+ DA o TR (u,0) 22

1
<> Y 2@yl (b —illes.

i=—1p'>q¢'—N

Taking the 83, norm, applying Young’s inequality and using that s’ +t > 0
yields

[[ote = DHa =2 Ay o T R (w,0) |2

<cC Z applez - . —ilez 1 -

1=—1
Finally, Holder’s inequality implies
_ ’ ’ /_ l
|20 DFCEHE= DA o TR (u,0) | 12 o < C - lapprllez - [1Bp 0l ez

that is

|T'R" (u, )] S C-uls,er - [oleer

stt—1,8'+t'— 3
This completes the proof for 7' R”. The other terms can be bounded in the same
way. []

TOME 127 — 1999 — n~° 4



NAVIER-STOKES EQUATIONS 485

We now add an interpolation property for these spaces:

ProposiTiON 1.1. — Let s,t,s',t' be four real numbers, o € [0,1] and
uwe H>S NHY . Then u € Host(-atas'+(-a)t’" 4pg
[U|as+(1—a)t,as'+(1—a)t < |u|?,s’ ) Iuii—t’a
Proof. — We have from Holder’s inequality that
Iulas+(l—a)t,as’+(1—a)t’
— ”(1 + lnl|2)%(as+(1—a)t)(1 +n§)%(as'+(1—a)t')un||e2

1 1l \a
<A+ 1221 +n3) 25 un)?| o
@+ 12 T+ n2)E ) | rame

R Ul vl

= luls,s’

This completes the proof. []

We will need to estimate |Vu|ss in terms of norms of w. The coming
proposition gives an useful equivalence.

ProrosiTiON 1.2. — Let u be a periodic function on the three dimensional
torus with vanishing mean. The following norms are equivalent:
IVuls,s/s  [uls+1,s + |uls, o741, sup |ulsta,s'+1-a-
a€l0,1]

Proof. — Using the interpolation property, one sees that the norm

sup 'u|s+a,s’+1-—a
a€l0,1]

is equivalent to the norm
'uk+l§'+'uh§“H‘
On the other hand, we have by definition that
IVul? o = 01ul? o + 102ul? o + |05ul?
= > () (1 + ) (03 + 13 + nd) un?
nez3
and that
'u|§+1,s' + |U|§,s'+1
S AP +n3)T + 1+ [ P) (1 + n3)*F g ?
nez3
S+ P) (14 n3) 2+ nd 4 nd 4+ nd)funf?

nezs

Since u(g,0,0) = 0, the conclusion follows. i
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If v € L?(T?) then one can write v € L2(T?) by defining
v(x1, T2, 23) = v(T1,Z2).
It is obvious that
Agov =27, Aggv=0 if ¢ >1.

It follows that, in the proof of Theorem 1.1 there is no loss on ¢’. This enables
us to modify that theorem as follows:

THEOREM 1.2. — Let v € H*(T?), w € HY such that s < 1, t < 1 and
s+t>0. Then

vw € HST1 gnd [vw|sqt—1,00 < C - |v]s - |wle 4.
Proof. — We treat x3 as a parameter and we use the decomposition of the
product vw as the sum of two-dimensional paraproducts and remainder:
(1.8) vw = Tyw + R(v,w) + Tyw,
where

Tyw = Z Sy v w,

p
1
(1.9) R(v,w)= Y > ALwA, w,

i=—1 p
Tow = Tyv.

We prove that the theorem holds under weaker assumptions for each of these
operators. More precisely, we have the following

LeEmMMA 1.5. — There exists a constant C such that if T, R and T are the
operators defined above, then for all v € H*(T?) and w € H®* we have

| Tyw|s4t—1,66 < C - |vls - |wle,p if s <1,
| Tyw|sqt—1,00 < C - |v|s - |wle,pr ift <1,
‘R(v’w)‘s-f-t—l,t’ SC- s |wle,e  if s+¢>0.

Proof. — Let us prove the assertion on 7. We have
[Aq,¢ Towllz2 < Z ”Aqth’(Sz@—ﬂA;w)”Lz

[p—q|<1

= Z ’|A;(SII7—2UAP:Q'W)HL2
lp—q|<1

<C Z “Szl)—ZvApyq’w“m
[p—q|<1

<C ISy gvllnee - [Apgwlze.
|p—q|<1
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Since v is two-dimensional and s < 1, we infer

18)_svll L < C2PO=I o,
Therefore

(1.10) 18q,¢ Towllzz < €290l Y Ay gwlre.

l[p—q|<1

It remains to multiply by 29(s+t=D+4't" 514 to take the ¢2 norm to obtain the
result on T'.

We consider now the 7' term. The following sequence of inequalities holds:

(1.11) 18ge Tl < 3 [|Agq (A Sh_yw)| s

lp—q|<1

= 3 |layAL S, AL,
lp—q|<1

< Y A oA,
lp—q|<1

SC Z “A;’U“.Lz'“Szlj_zA;I/w”Loo,Z,
[p—q|<1

One can estimate

1S g Ahwlpes < > [ Argwllzee,

r<p—2
<C Z 2"[|Ar g w2
r<p—2
< C2—q't' Z 2r(l_t)||2rt+q,t,”Ar,q’w”L2”eﬁ

r<p—2

< Cz—qlt'—P(t—l)||27‘t+q't,||AT‘q,w“Lz”gz;.
Thus

galstt=D+a't I Aq,q’fv'w Il L2

<0 3 ALl 27 A gw]l 2l
Ip—q|<1

The conclusion for 7' now follows by taking the ¢2 norm.
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Finally, we prove the assertion on R. One has

1
| Ag.q R(v,w)]| 2 < Z Z [ Ag,q (ALvA! )|,

i=—1p>q-2
1
=3 3 Ay gw)Le
i=—1p>q—2
1
<CY Y 2 AwA, s gwlle
i=—1p>q-2
1
<03 Y 21 AL] e Api g .
i=—1p>q-2

It follows that

(1.12) 2q(s+t—1)+q’t’|

Ag ¢ R(v, u))HL2

1
SO 3 AP Ay e - 20T A, ] e

i=—1p>q—-2
Applying Young’s inequality completes the proof of Lemma 1.5. []
The decomposition (1.8) and Lemma 1.5 implies Theorem 1.2. []

In Section 2 we shall need to apply Theorem 1.2 in the case s > 1. The coming
inequality is a variant of an inequality proved by J.-Y.Chemin and N. Lerner
in [5]. It shows how to avoid this difficulty in some cases.

ProposiTioN 1.3. — There exists a constant C' such that for all v € H*(T?)
and w such that diveo =0, Vw € HYY | s < 2,t <1 and s+t > 0 there exists a
sequence (aq,q') such that

|<Aq,q’(v - Vw) | Aq,q’ww

< Cagq 27D | |Vl - [ Ag,gwli2,
and |lag,q [l = 1.
Proof. — We write
‘(Aq,q’(v -Vuw) | Aq,q’w>| = |<Aq,q'(Tvvw) | Aq,q’wﬂ
+ )<Aq,q’(R(v’Vw)) | Aq,q’“’)‘
+ I(Aq,q’ (Twwv) | Aq,q’w>'v
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