@article{BSMF_1993__121_1_13_0,
author = {Sen, Shankar},
title = {An infinite dimensional {Hodge-Tate} theory},
journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
pages = {13--34},
year = {1993},
publisher = {Soci\'et\'e math\'ematique de France},
volume = {121},
number = {1},
doi = {10.24033/bsmf.2199},
mrnumber = {94e:11121},
zbl = {0786.11067},
language = {en},
url = {https://www.numdam.org/articles/10.24033/bsmf.2199/}
}
TY - JOUR AU - Sen, Shankar TI - An infinite dimensional Hodge-Tate theory JO - Bulletin de la Société Mathématique de France PY - 1993 SP - 13 EP - 34 VL - 121 IS - 1 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/bsmf.2199/ DO - 10.24033/bsmf.2199 LA - en ID - BSMF_1993__121_1_13_0 ER -
Sen, Shankar. An infinite dimensional Hodge-Tate theory. Bulletin de la Société Mathématique de France, Tome 121 (1993) no. 1, pp. 13-34. doi: 10.24033/bsmf.2199
[1] . - Commutative Algebra. - Hermann, Paris, 1972. | MR
[2] . - Topological Vector Spaces, Chap. 1-5. - Springer-Verlag, Berlin, 1987. | Zbl | MR
[3] and . - Homological Algebra. - Princeton, 1956. | Zbl | MR
[4] and . - On p-adic analytic families of Galois representations, Compos. Math., t. 59, 1986, p. 231-264. | Zbl | MR | Numdam
[5] . - Deforming Galois representations in Galois Groups over Q, Proceedings of the March 1987 MSRI Worshop, Y. Ihara, K. Ribet and J.-P. Serre, eds., Springer-Verlag, 1989, p. 385-437. | Zbl
[6] . - Two-dimensional p-adic Galois representations unramified away from p, Compos. Math., t. 74, 1990, p. 115-133. | Zbl | MR | Numdam
[7] . - Continuous cohomology and p-adic Galois representations, Invent. Math., t. 62, 1980, p. 89-116. | Zbl | MR
[8] . - The analytic variation of p-adic Hodge structure, Ann. of Math., t. 127, 1988, p. 647-661. | Zbl | MR
[9] . - Groupes algébriques associés aux modules de Hodge-Tate, in Journées de Géométrie Algébrique de Rennes, Astérisque, t. 65, 1979, p. 155-187. | Zbl | MR | Numdam
[10] . - p-divisible groups, Proc. Conf. Local Fields, Springer-Verlag, Heidelberg 1967, p. 158-183. | Zbl | MR
Cité par Sources :






