@article{CM_1986__59_2_231_0,
author = {Mazur, B. and Wiles, A.},
title = {On $p$-adic analytic families of {Galois} representations},
journal = {Compositio Mathematica},
pages = {231--264},
year = {1986},
publisher = {Martinus Nijhoff Publishers},
volume = {59},
number = {2},
mrnumber = {860140},
zbl = {0654.12008},
language = {en},
url = {https://www.numdam.org/item/CM_1986__59_2_231_0/}
}
Mazur, B.; Wiles, A. On $p$-adic analytic families of Galois representations. Compositio Mathematica, Tome 59 (1986) no. 2, pp. 231-264. https://www.numdam.org/item/CM_1986__59_2_231_0/
[At] : Congruences for modular forms. Proceedings of the IBM Conference on Computers in Mathematical Research, Blaricium, 1966. North-Holland (1968) 8-19. | Zbl | MR
[C-R] and : Representation theory of finite groups and associative algebras. Interscience, New York (1962). | Zbl | MR
[D-S] and : Formes modulaires de poids 1. Ann. Sci. Ecole Norm. Sup. 7 (1974) 507-730. | Zbl | MR | Numdam
[Fa] : Report on Hodge-Tate-Structures. (preprint. Princeton U. 1985).
[Gr] : Groupes de Monodromie en Géométrie Algébrique. Lecture Notes in Mathematics, 288. Springer-Verlag, Berlin- Heidelberg-New York (1972). | Zbl | MR
[Har] : Residues and Duality. Lecture Notes in Mathematics, 20 Springer-Verlag, Berlin-Heidelberg-New York (1966). | Zbl | MR
[Hi 1] : Iwasawa modules attached to congruences of cusp forms. To appear in Ann. Sci. E.N.S. | Zbl | MR | Numdam
[Hi 2] : Galois representations into GL2(Zp[[X]]) attached to ordinary cusp forms (preprint). | Zbl
[Ka] : P-adic properties of modular schemes and modular forms. Modular Functions of One Variable III. Lecture Notes in Mathematics, 350. Springer Verlag, Berlin-Heidelberg-New York (1973) 69-141. | Zbl | MR
[K-M] and : Arithmetic moduli of elliptic curves. Annals of Math. Studies, 108. Princeton Univ. Press (1985). | Zbl | MR
[Li] : Newforms and functional equations. Math. Ann. 212 (1975) 285-315. | Zbl | MR
[M1] : Isogenies of prime degree. Inv. Math. 44 (1978) 129-162. | Zbl | MR
[M2] : Modular curves and the Eisenstein ideal. Publ. Math. IHES 47 (1978) 33-186. | Zbl | MR | Numdam
[M-W 1] and : Classfields of abelian extensions of Q. Inv. Math. 76 (1984) 179-330. | Zbl | MR
[M-W 2] and : Analogies between function fields and number fields. Amer. J. Math. 105 (1983) 507-521. | Zbl | MR
[Od] : On conductors and discriminants.
[O] : On the eigenvalues of Hecke operators. Math. Ann. 179 (1969) 101-108. | Zbl | MR
[Sch] : Arithmetische Untersuchungen über endliche Gruppen linearer Substitutionen, Sitzungsberichte Preuss. Ak. der Wiss. (1906) pp. 164-184. In: Gesammelte Abhandlungen I. Springer-Verlag, Berlin-Heidelberg -New York (1973) 177-197. | JFM
[Sen] : Continuous cohomology and p-adic Galois representations. Inv. Math. 62 (1981) 89-116. | Zbl | MR
[Serre 1] : Représentations l-adiques. Kyoto Int. Symp. on Algebraic Number Theory (1977) 177-193. | Zbl | MR
[Serre 2] : Congruences et formes modulaires [d'après H.P.F. Swinnerton-Dyer] Sém. Bourbaki exp. 416. Lecture Notes in Mathematics 317. Springer-Verlag, Berlin-Heidelberg -New York (1973) 319-338. | Zbl | MR | Numdam
[Serre 3] : Linear representations of finite groups. Springer-Verlag, New York-Heidelberg -Berlin (1977). | Zbl | MR
[S-T] and : Good reduction of abelian varieties, Ann. of Math. 88 (1968) 492-517. | Zbl | MR
[SwD] : On l-adic representations and congruences for coefficients of modular forms. Modular Functions of One Variable III. Lecture Notes in Mathematics, 350. Springer-Verlag, Berlin-Heidelberg - New York (1973) 1-56. | Zbl | MR
[Ta] : p-divisible groups. Proceedings of a conference on local fields (Driebergen 1966). Berlin-Heidelberg-New York, Springer-Verlag (1967) 158-183. | Zbl | MR
[W] : Modular curves and the class group of Q(ζp). Inv. Math. 58 (1980) 1-35. | Zbl
[1] : A Course on Group Theory. Cambridge Univ. Press, London/New York (1978). | Zbl | MR
[2] : Lineare Gruppen über lokalen Ringen, Amer. J. Math. 83 (1961) 137-153. | Zbl | MR
[3] : Geometric Algebra over Local Rings. Marcel Dekker Inc., New York and Basel (1976). | Zbl | MR






