Analytical and numerical study of some free boundary value problems and phase field models
Thèses d'Orsay, no. 408 (1995) , 148 p.
@phdthesis{BJHTUP11_1995__0408__P0_0,
     author = {Dupaix, Cedric},
     title = {Analytical and numerical study of some free boundary value problems and phase field models},
     series = {Th\`eses d'Orsay},
     publisher = {Universit\'e de Paris-Sud Centre d'Orsay},
     number = {408},
     year = {1995},
     language = {en},
     url = {http://www.numdam.org/item/BJHTUP11_1995__0408__P0_0/}
}
TY  - BOOK
AU  - Dupaix, Cedric
TI  - Analytical and numerical study of some free boundary value problems and phase field models
T3  - Thèses d'Orsay
PY  - 1995
IS  - 408
PB  - Université de Paris-Sud Centre d'Orsay
UR  - http://www.numdam.org/item/BJHTUP11_1995__0408__P0_0/
LA  - en
ID  - BJHTUP11_1995__0408__P0_0
ER  - 
%0 Book
%A Dupaix, Cedric
%T Analytical and numerical study of some free boundary value problems and phase field models
%S Thèses d'Orsay
%D 1995
%N 408
%I Université de Paris-Sud Centre d'Orsay
%U http://www.numdam.org/item/BJHTUP11_1995__0408__P0_0/
%G en
%F BJHTUP11_1995__0408__P0_0
Dupaix, Cedric. Analytical and numerical study of some free boundary value problems and phase field models. Thèses d'Orsay, no. 408 (1995), 148 p. http://numdam.org/item/BJHTUP11_1995__0408__P0_0/

[1] F. Abergel and J.L. Bona, A mathematical theory for viscous, free-surface flows over a perturbed plane, Arch. Rat. Mech. Anal. 118 (1992), 71-93. | MR | Zbl | DOI

[2] D. Brochet, X. Chen and D. Hilhorst, Finite dimensional exponential attractor for the phase field model, Appl. Anal. 49 (1993), 197-212. | MR | Zbl | DOI

[3] C. Caginalp, Stefan and Hele-Shaw type models as asymptotic limits of the phase-field equations, Phys. Rev. A 39 n.11 (1989), 5887-5896. | MR | Zbl | DOI

[4] S.J. Cowley and S.H. Davis, Viscous Thermocapillary Convection at High Marangoni Number, J. Fluid. Mech. 135 (1983), 175-188. | Zbl | DOI

[5] A. Debussche, A singular perturbation of the Cahn-Hilliard equation, Asym. Anal. 4 (1991), 161-185. | MR | Zbl

[6] A. Debussche and L. Dettori, On the Cahn-Hilliard equation with a logarithmic free energy, prépublication. | Zbl | DOI

[7] C.M. Elliott and A.M. Stuart, The viscous Cahn-Hilliard equation, à paraître. | Zbl

[8] J. Hale and G. Raugel, Upper semicontinuity of the attractor for a singularly perturbed hyperbolic equation, J. Diff. Eq. 73 (1988), 197-214. | MR | Zbl | DOI

[9] T. Ikeda and R. Kobayashi, Numerical approach to interfacial dynamics, Proceedings of the Workshop on Nonlinear Partial Differential Equations and Applications, 1989.

[10] V.G Maz'Ya and B.A Plamenevskii, Weighted Spaces with Nonhomogeneous Norms and Boundary Value Problems in Domains with Conical Points, AMS Trans. 123 (1984), 89-108. | Zbl

[11] A. Novick-Cohen, On the viscous Cahn-Hilliard equation, Material Instabilities in Continuum Mechanics and Related Mathematical Problems, ed J. Ball, Clarendon-Press, 1988. | MR | Zbl

[12] A. Roosen and J. Taylor, Modeling crystal growth in a diffusion field using fully-facetted interfaces, J. Comput. Phys. 114 (1994), 113-128. | MR | Zbl | DOI

[13] D. Schwabe, Surface-Tension Driven Flow in Crystal Growth Melts, Crystals Growth, Properties, and Applications, 11 (1988), Springer Verlag.

[14] V.A Solonnikov, Solvability of a problem on a plane motion of a heavy viscous incompressible capillary liquid partially filling a container, Math. USSR Izves. 14 n.1 (1980), 193-221. | Zbl | DOI

[15] V.A Solonnikov , On the Stokes Equations in Domains with non-smooth Boundaries and on Viscous Incompressible Flow with a Free Surface, Nonlinear Partial Differential Equations and Applications, Collège de France Seminar III (1980-81). | MR | Zbl

[16] B. Stoth, The Cahn-Hilliard equation as limit of the phase-field equations, to appear in Quart. Appl. Math. | MR | Zbl | DOI

[17] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Appl. Math. Sci. 68, Springer-Verlag, New-York, 1988. | MR | Zbl

[1] F. Abergel, A geometric approach to the study of stationary free surface flows for viscous liquids, Proceeding of the Royal Society of Edinbourgh, 1993. | MR | Zbl

[2] F. Abergel and J.L. Bona, A mathematical theory for viscous, free-surface flows over a perturbed plane, Arch. Rat. Mech. and Ana. 118 (1992), 71-93. | MR | Zbl | DOI

[3] G. Allain, Rôle de la tension superficielle dans la convection de Bénard, M2AN 24 No2 (1990), 153-175. | MR | Zbl | Numdam | DOI

[4] I. Bouilhac, Ecoulement Marangoni-Rayleigh induit par un flux thermique sur la surface libre, Thèse de l'Université Paris 11 (1991).

[5] R.V. Churchill, Operational Mathematics, Mac Graw-Hill International Student Edition. | MR | Zbl

[6] E.A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, Mac Graw-Hill Ed. | MR | Zbl

[7] S.J Cowley and S.H. Davis, Viscous Thermocapillary Convection at High Marangoni Number, J. Fluid. Mech. 135 (1983), 175-188. | Zbl | DOI

[8] R. Finn, Equilibrium Capilary Surfaces, Grundlehren der Mathematischen Wissenschaften 284, Springer Verlag. | MR | Zbl

[9] C. Gerhardt, Boundary Value Problems for Surfaces of Prescribed Mean Curvature, J. Math. Pures et Appl. 58 (1979), 75-109. | MR | Zbl

[10] E.L. Ince, Ordinary Differential Equations, Dover Publications, Inc. | MR | Zbl | JFM

[11] L. Landau et E. Lifchitz, Physique Théorique. Mécanique des Fluides, Ed. MIR Moscou 1971. | Zbl

[12] P. Manneville, Structures Dissipatives, Chaos et Turbulence, Collection Aléa Saclay.

[13] V.G. Maz'Ya and B.A Plamenevskii, Weighted Spaces with Nonho- mogeneous Norms and Boundary Value Problems in Domains with Conical Points, AMS Trans. 123 (1984), 89-108. | Zbl

[14] D. Schwabe, Surface-Tension Driven Flow in Crystal Growth Melts, Crystals Growth, Properties, and Applications 11 (1988), Springer Verlag.

[15] V.A. Solonnikov, Solvability of a problem on a plane motion of a heavy viscous incompressible capillary liquid partially filling a container, Math. USSR Izves. 14 n.1 (1980), 193-221. | Zbl | DOI

[16] V.A. Solonnikov, On the Stokes Equations in Domains with nonsmooth Boundaries and on Viscous Incompressible Flow with a Free Surface, Nonlinear Partial Differential Equations and Application, College de France Seminar III (Paris 1980-81). | MR | Zbl

[1] F. Abergel, D. Hilhorst and F. Issard-Roch, On a dissolution-growth problem with surface tension in the neighborhood of a stationary solution, SIAM J. Math. Anal. Vol. 24, No. 2 (1993), 299-316. | MR | Zbl | DOI

[2] F. Abergel, D. Hilhorst, F. Issard-Roch and Jf. Scheid, Local existence and uniqueness of a Stefan problem with surface tension, to appear. | MR | Zbl | DOI

[3] S. Angenent and M.E. Gurtin, Multiphase thermomechanics with interfacial structure 2. Evolution of an isothermal interface, Arch. Rat. Mech. Anal., 108 (4) (1986), 199-241. | MR

[4] W.K. Burton, N. Cabrera and F. Frank, Philo. Trans. R. Soc. London, Ser. A (1951), 243-299.

[5] G. Caginalp and E. Socolovsky, Phase field computations of singleneedle crystals, crystal growth, and motion by mean curvature , SIAM J. Sci. Comput. Vol. 15, No. 1 (1994), 106-126. | MR | Zbl | DOI

[6] F. Conrad and M. Cournil, Multiplicity and stability analysis in a free boundary problem arising from a dissolution-growth process, J. of Colloid and Interface Science Vol. 121 (1988), 426-439. | DOI

[7] F. Gruy and M. Cournil, Dissolution-croissance de particules : modèle général et nouvelle approche du murissement d'Oswald, Récents Progrès en Génie des Procédés Vol. 7 (1993), 105-110.

[8] T. Ikeda and R. Kobayashi, Numerical approach to interfacial dynamics, Proc. of Workshop on Nonlinear PDE and Appl. (1989).

[9] S. Osher and J.A. Sethian, Fronts propagating with curvature- dependent speed : algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics 79 (1988), 12-49. | MR | Zbl | DOI

[10] I. Prigogine and R. Defay, Tension superficielle et adsorption, Edition Desoer, Liège, 1951.

[11] A. Roosen and J. Taylor, Modeling crystal growth in a diffusion field using fully-facetted interfaces, Journal of Computational Physics 114 (1994), 113-128. | MR | Zbl | DOI

[12] Y. Saad and M. Schultz, GMRES : a generalized minimal residual algorithm for solving nonsymetric linear systems, SIAM J. Sci. Stat. Comput. Vol. 10 (1989), 36-52. | MR | Zbl

[13] J.F. Scheid, Etude théorique et numérique de l'évolution morphologique d'interfaces, Ph. D. Thesis (1994), University of Orsay (France).

[14] J.F. Scheid, On a dissolution-growth problem with surface tension : local existence and uniqueness, to appear in Applied Math. Letters. | MR | Zbl

[15] T.I. Seidman, Private communication.

[16] J.A. Sethian, Numerical algorithms for propagating interfaces : Hamilton-Jacobi equations and conservation laws, J. Differential Geometry, 31 (1990), 131-161. | MR | Zbl | DOI

[17] J. Taylor, J. Cahn and A. Handwerker, I- Geometric models of crystal growth, Acta Metall. Mater. Vol. 40, No 7 (1992), 1443-1474. | DOI

[18] J. Taylor, J. Cahn and A. Handwerker, II- Mean curvature and weighted mean curvature, Acta Metall. Mater. Vol. 40, No 7 (1992), 1475-1485. | DOI

[19] J. Van Der Vorst and P. Sonneveld, CGSTAB : a more smoothly converging variant of CG-S, Delft University of Technology, 1990.

[1] D. Brochet, X. Chen and D. Hilhorst, Finite dimensional exponential attractor for the phase field model, Appl. Anal. 49 (1993), 197-212. | MR | Zbl | DOI

[2] C. Caginalp, Stefan and Hele-Shaw type models as asymptotic limits of the phase-field equations, Phys. Rev. A 39 n.11 (1989), 5887-5896. | MR | Zbl | DOI

[3] A. Debussche, A singular perturbation of the Cahn-Hilliard equation, Asym. Anal. 4 (1991), 161-185. | MR | Zbl

[4] C. Dupaix, D. Hilhorst and Ph. Laurençot, Upper-semicontinuity of the attractor for a singularly perturbed phase field model, preprint. | MR | Zbl

[5] C. Dupaix, A singularly perturbed phase field model with a logarithmic nonlinearity, preprint. | MR | Zbl

[6] C.M. Elliott and I.N. Kostin, Lower semicontinuity of a non-hyperbolic attractor for the viscous Cahn-Hilliard equations, preprint, University of Sussex (1993). | MR | Zbl

[7] C.M. Elliott and A.M. Stuart, The viscous Cahn-Hilliard equation Part II : Analysis, preprint SCCM-94-12, Stanford. | MR | Zbl

[8] J. Hale and G. Raugel, Upper semicontinuity of the attractor for a singularly perturbed hyperbolic equation, J. Diff. Eq. 73 (1988), 197-214. | MR | Zbl | DOI

[9] Ph. Laurençot, Long-time behaviour for a model of phase-field type, to appear in Proc. Roy. Soc. Edinburgh A. | MR | Zbl

[10] M. Marion, Approximate inertial manifolds for the pattern formation Cahn-Hilliard equation, RAIRO Math. Mod. Num. Anal. 23 n.3 (1989). 463-488. | MR | Zbl | Numdam | DOI

[11] A. Novick-Cohen, On the viscous Cahn-Hilliard equation, Material Instabilities in Continuum Mechanics and Related Mathematical Problems, ed J. Ball, Clarendon-Press, 1988. | MR | Zbl

[12] J. Simon, Compact sets in the space Lp(0, T; B), Ann. Mat. Pura ed Applicata IV, CXLVI (1987), 65-96. | MR | Zbl

[13] B. Stoth, The Cahn-Hilliard equation as limit of the phase-field equations, to appear in Quart. Appl. Math. | MR | Zbl | DOI

[14] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Appl. Math. Sci. 68, Springer-Verlag, New-York, 1988. | MR | Zbl

[1] D. Brochet, X. Chen and D. Hilhorst, Finite dimensional exponential attractor for the phase field model, Appl. Anal. 49 (1993), 197-212. | MR | Zbl | DOI

[2] A. Debussche and L. Dettori, On the Cahn-Hilliard equation with a logarithmic free energy, preprint. | MR | Zbl | DOI

[3] C. Dupaix, D. Hilhorst and Ph. Laurençot, Upper-semicontinuity of the attractor for a singular perturbation of the viscous Cahn-Hilliard and Cahn-Hilliard equations, preprint. | Zbl

[4] C.M. Elliott and S. Luckhaus, A generalised diffusion equation for phase separation of a multi-component mixture with interfacial free energy, preprint.

[5] J.L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod. | MR | Zbl

[6] J. Simon, Compact sets in the space Lp(0,T; B), Ann. Mat. Pura ed Applicata IV, CXLVI (1987) 65-96. | MR | Zbl

[7] R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Appl. Math. Sci. 68, Springer-Verlag, New-York, 1988. | MR | Zbl

[8] R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, 3rd rev. ed., North-Holland, Amsterdam 1984. | MR | Zbl