@book{AST_2002__281__R1_0, author = {Duquesne, Thomas and Le Gall, Jean-Fran\c{c}ois}, title = {Random trees, {L\'evy} processes and spatial branching processes}, series = {Ast\'erisque}, publisher = {Soci\'et\'e math\'ematique de France}, number = {281}, year = {2002}, zbl = {1037.60074}, mrnumber = {1954248}, language = {en}, url = {http://www.numdam.org/item/AST_2002__281__R1_0/} }
TY - BOOK AU - Duquesne, Thomas AU - Le Gall, Jean-François TI - Random trees, Lévy processes and spatial branching processes T3 - Astérisque PY - 2002 DA - 2002/// IS - 281 PB - Société mathématique de France UR - http://www.numdam.org/item/AST_2002__281__R1_0/ UR - https://zbmath.org/?q=an%3A1037.60074 UR - https://www.ams.org/mathscinet-getitem?mr=1954248 LA - en ID - AST_2002__281__R1_0 ER -
Duquesne, Thomas; Le Gall, Jean-François. Random trees, Lévy processes and spatial branching processes. Astérisque, no. 281 (2002), 153 p. http://numdam.org/item/AST_2002__281__R1_0/
[1] The continuum random tree I. Ann. Probab. 19, 1-28. | Article | MR 1085326 | Zbl 0722.60013
(1991)[2] The continuum random tree II: An overview. In: Stochastic Analysis (M.T. Barlow, N.H. Bingham eds), pp. 23-70. Cambridge University Press, Cambridge. | Article | MR 1166406 | Zbl 0791.60008
(1991)[3] The continuum random tree III. Ann. Probab. 21, 248-289. | Article | MR 1207226 | Zbl 0791.60009
(1993)[4] A random walk approach to Galton-Watson trees. J. Theoret. Probab. 13, 777-803. | Article | MR 1785529 | Zbl 0977.60083
, (2000)[5] Lévy Processes. Cambridge University Press, Cambridge. | MR 1406564 | Zbl 0938.60005
(1996)[6] Fluctuation theory in continuous time. Adv. Appl. Probab. 7, 705-766. | Article | MR 386027 | Zbl 0322.60068
(1975)[7] On distribution tails and expectations of maxima in critical branching processes. J. Appl. Probab. 33, 614-622. | Article | MR 1401459 | Zbl 0869.60077
, (1996)[8] Historical Processes. Memoirs Amer. Math. Soc. 454. | MR 1079034 | Zbl 0754.60062
, (1991)[9] Probabilités et potentiels, Chapitres XII à XVI: Théorie du potentiel associée une résolvante, théorie des processus de Markov. Hermann, Paris | MR 898005 | Zbl 0624.60084
, (1987)[10] A limit theorem for the contour process of conditioned Galton-Watson trees. Ann. Probab., to appear. | MR 1964956 | Zbl 1025.60017
(2001)[11] Branching processes in simple random walk. Proc. Amer. Math. Soc. 51, 251-274. | Article | MR 370775 | Zbl 0312.60032
(1975)[12] A probabilistic approach to one class of nonlinear differential equations. Probab. Th. Rel. Fields 89, 89-115. | Article | MR 1109476 | Zbl 0722.60062
(1991)[13] Diffusions, Superdiffusions and Partial Differential Equations. Amer. Math. Soc. Colloquium Publications, Vol. 50. Providence, 2002. | MR 1883198 | Zbl 0999.60003
(2001)[14] Markov Processes: Characterization and Convergence. Wiley. | MR 838085 | Zbl 1089.60005
, (1986)[15] An Introduction to Superprocesses. University Lecture Series vol. 20. American Math. Society, Providence. | MR 1779100 | Zbl 0971.60053
(2000)[16] An Introduction to Probability Theory and Its Applications, Vol. II, 2 sec. ed.. Wiley, New York. | MR 270403
(1971)[17] The structure of reduced critical Galton-Watson processes. Math. Nachr. 79, 233-241. | Article | MR 461689 | Zbl 0299.60065
, (1977)[18] Contour processes of random trees. In: Stochastic Partial Differential Equations (A. Etheridge ed.). London Math. Soc. Lect. Notes 216, pp. 72-96. Cambridge University Press, Cambridge. | Article | MR 1352736 | Zbl 0823.60077
(1995)[19] On the contour of random trees. SIAM J. Discrete Math. 12, 434-458. | Article | MR 1720416 | Zbl 0935.05032
(1999)[20] Asymptotic behaviour of continuous time, continuous statespace branching processes. J. Appl. Probab. 11, 669-677. | Article | MR 408016 | Zbl 0301.60060
(1974)[21] On the convergence of sequence of branching processes. Ann. Probab. 2, 1027-1945. | Article | MR 362529 | Zbl 0361.60062
(1974)[22] Marked excursions and random trees. Séminaire de Probabilités XXXIV. Lecture Notes Math. 1729, pp. 289-301. Springer. | Article | EuDML 114042 | Numdam | MR 1768069 | Zbl 0965.60078
(2000)[23] Théorèmes limites pour les processus. Lecture Notes in Math. 1117, 298-409. Springer, Berlin. | MR 883648 | Zbl 0565.60030
(1985)[24] Limit Theorems for Stochastic Processes. Springer, Berlin. | Article | MR 959133 | Zbl 0635.60021
, (1987)[25] On solutions of . Comm. Pure Appl. Math. 10, 503-510. | MR 91407 | Zbl 0090.31801
(1957)[26] On the height profile of a conditioned Galton-Watson tree. To appear.
(1998)[27] The limit of a sequence of branching processes. Z. Wahrsch. verw. Gebiete 7, 271-288. | Article | MR 217893 | Zbl 0154.42603
(1967)[28] A class of path-valued Markov processes and its applications to superprocesses. Probab. Th. Rel. Fields 95, 25-46. | Article | MR 1207305 | Zbl 0794.60076
(1993)[29] Hitting probabilities and potential theory for the Brownian path-valued process. Ann. Inst. Fourier 44, 277-306. | Article | EuDML 75059 | Numdam | MR 1262889 | Zbl 0794.60077
(1994)[30] The Brownian snake and solutions of in a domain. Probab. Th. Rel. Fields 102, 393-432. | Article | MR 1339740 | Zbl 0826.60062
(1995)[31] Spatial Branching Processes, Random Snakes and Partial Differential Equations. Birkhaüser, Boston. | MR 1714707 | Zbl 0938.60003
(1999)[32] Branching processes in Lévy processes: The exploration process. Ann. Probab. 26, 213-252. | Article | MR 1617047 | Zbl 0948.60071
, (1998)[33] Branching processes in Lévy processes: Laplace functionals of snakes and superprocesses. Ann. Probab. 26, 1407-1432. | MR 1675019 | Zbl 0945.60090
, (1998)[34] The Hausdorff measure of the support of two-dimensional super-Brownian motion. Ann. Probab. 23, 1719-1747. | Article | MR 1379165 | Zbl 0856.60055
, (1995)[35] A LIFO queue in heavy traffic. Ann. Appl. Probab. 11, 301-331. | Article | MR 1843048 | Zbl 1015.60079
(2001)[36] The depth first processes of Galton-Watson trees converge to the same Brownian excursion. Preprint. | MR 1989446 | Zbl 1049.05026
, (2001)[37] On a certain class of infinitely divisible distributions. Israel J. Math. 16, 1-19. | Article | MR 350808 | Zbl 0276.60022
(1973)[38] Probabilistic classification and representation of positive solutions of in a domain. PhD thesis, Université Paris VI.
(2002)[39] The branching process in a Brownian excursion. Séminaire de Probabilités XXIII. Lecture Notes Math. 1372, pp. 248-257. Springer. | Article | EuDML 113678 | Numdam | MR 1022915 | Zbl 0741.60081
, (1989)[40] Dawson-Watanabe Superprocesses and Measure-valued Diffusions. Notes from the Ecole d'été de probabilités de Saint-Flour 1999. To appear. | MR 1915445 | Zbl 1020.60075
(1999)[41] On the inequality . Pac. J. Math. 7, 1641-1647. | MR 98239 | Zbl 0083.09402
(1957)[42] Brownian local times and branching processes. Séminaire de Probabilités XVIII. Lecture Notes Math. 1059, pp. 42-55. Springer. | EuDML 113496 | Numdam | MR 770947 | Zbl 0542.60080
(1984)[43] On the conditioned exit measures of super-Brownian motion. Probab. Th. Rel. Fields 115, 237-285. | Article | MR 1720367 | Zbl 0953.60078
, (1999)[44] Non-degenerate conditionings of the exit measures of super-Brownian motion. Stoch. Process. Appl. 87, 25-52. | Article | MR 1751163 | Zbl 1045.60047
, (2000)[45] Asymptotic behavior of superprocesses. Stochastics Stoch. Reports 49, 239-252. | Article | MR 1785007 | Zbl 0827.60066
(1994)[46] Limit theorems for stochastic processes with independent increments. Theory Probab. Appl. 2, 138-171. | Article | MR 94842 | Zbl 0097.13001
(1957)[47] A branching process with mean one and possibly infinite variance. Z. Wahrsch. verw. Gebiete 9, 139-145. | Article | MR 228077 | Zbl 0164.47002
(1968)[48] Limit theorems for critical Markov branching processes with several types of particles and infinite second moments. Math. USSR Sbornik 32, 215-225. | Article | MR 443115 | Zbl 0396.60072
(1977)[49] Reduced branching processes. Theory Probab. Appl. 25, 584-588. | Article | MR 582588 | Zbl 0463.60070
(1980)[50] Limit distributions of the distance to the closest common ancestor. Theory Probab. Appl. 20, 602-612. | Article | MR 397915 | Zbl 0348.60118
(1975)