@article{SPS_1984__18__42_0,
author = {Rogers, L. C. G.},
title = {Brownian local times and branching processes},
journal = {S\'eminaire de probabilit\'es},
pages = {42--55},
year = {1984},
publisher = {Springer - Lecture Notes in Mathematics},
volume = {18},
mrnumber = {770947},
zbl = {0542.60080},
language = {en},
url = {https://www.numdam.org/item/SPS_1984__18__42_0/}
}
Rogers, L. C. G. Brownian local times and branching processes. Séminaire de probabilités, Tome 18 (1984), pp. 42-55. https://www.numdam.org/item/SPS_1984__18__42_0/
[1] and Branching Processes. Springer, Berlin, 1972. | Zbl | MR
[2] Convergence of Probability Measures. Wiley, New York, 1968. | Zbl | MR
[3] Conditioned limit theorems for some null recurrent Markov processes. Ann. Probability 6, 798-828, 1978. | Zbl | MR
[4] and Functional limit theorems for dependent variables. Ann. Probability 6, 829-846, 1978. | Zbl | MR
[5] Branching processes in simple random walk. Proc. Amer. Math. Soc. 51, 270-274, 1975. | Zbl | MR
[6] and Stochastic differential equations and diffusion processes. North Holland-Kodansha, Amsterdam and Tokyo, 1981. | Zbl | MR
[7] , and Stopping times and tightness. Stoch. Procs. and App. 14, 109-146, 1982. | Zbl
[8] Random walks and a sojourn density of Brownian motion. Trans. Amer. Math. Soc. 109, 56-86, 1963. | Zbl | MR
[9] The limit of a sequence of branching processes. Z.f. Wahrscheinlichkeitsth. 7, 271-288, 1967. | Zbl | MR
[10] Convergence of critical Galton-Watson processes. J. Appl. Probability 9, 445-450, 1972. | Zbl | MR
[11] and Bessel processes and infinitely divisible laws. Stochastic Integrals SLN 851, 285-370, Ed. D. Williams. Springer, Berlin, 1981. | Zbl | MR
[12] and A decomposition of Bessel bridges. Z.f. Wahrscheinlichkeitsth. 59, 425-457, 1982. | Zbl | MR
[13] Sojourn times of diffusion processes. I11 J. Math. 7, 615-630, 1963. | Zbl | MR
[14] Williams' characterisation of the Brownian excursion law; proof and applications. Sem. Prob. XV 227-250, Springer, Berlin,1981. | Zbl | MR | Numdam
[15] Diffusions, Markov Processes, and Martingales. Vol. I. Wiley, Chichester 1979. | Zbl | MR
[16] and . On the uniqueness of solutions of stochastic differential equations. J. Math. Kyoto Univ. 11, 155-167, 1971. | Zbl | MR





