Spaces whose rational homology and de Rham homotopy are both finite dimensional
Homotopie algébrique et algèbre locale, Astérisque, no. 113-114 (1984), 8 p.
@incollection{AST_1984__113-114__198_0,
     author = {Halperin, Stephen},
     title = {Spaces whose rational homology and de {Rham} homotopy are both finite dimensional},
     booktitle = {Homotopie alg\'ebrique et alg\`ebre locale},
     author = {Collectif},
     series = {Ast\'erisque},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {113-114},
     year = {1984},
     mrnumber = {749058},
     zbl = {0546.55015},
     language = {en},
     url = {http://www.numdam.org/item/AST_1984__113-114__198_0/}
}
TY  - CHAP
AU  - Halperin, Stephen
TI  - Spaces whose rational homology and de Rham homotopy are both finite dimensional
BT  - Homotopie algébrique et algèbre locale
AU  - Collectif
T3  - Astérisque
PY  - 1984
DA  - 1984///
IS  - 113-114
PB  - Société mathématique de France
UR  - http://www.numdam.org/item/AST_1984__113-114__198_0/
UR  - https://www.ams.org/mathscinet-getitem?mr=749058
UR  - https://zbmath.org/?q=an%3A0546.55015
LA  - en
ID  - AST_1984__113-114__198_0
ER  - 
Halperin, Stephen. Spaces whose rational homology and de Rham homotopy are both finite dimensional, dans Homotopie algébrique et algèbre locale, Astérisque, no. 113-114 (1984), 8 p. http://www.numdam.org/item/AST_1984__113-114__198_0/

[1] J. Friedlander and S. Halperin. Rational homotopy groups of certain spaces, Invent. Math. 53 (1979) p. 117-133. | Article | EuDML 142658 | MR 560410 | Zbl 0396.55010

[2] S. Halperin. Finiteness in the minimal models of Sullivan. Trans. Amer. Math. Soc. 230 (1977) p. 173-199. | Article | MR 461508 | Zbl 0364.55014

[3] S. Halperin. Rational fibrations, minimal models and the fibring of homogeneous spaces. Trans. Amer. Math. Soc. 244 (1978) p. 199-223. | Article | MR 515558 | Zbl 0387.55010

[4] D. Sullivan, Infinitesimal Computations in Topology. Inst. Hautes Etudes Sci. Publ. Math. 47 (1978) p. 269-331). | Article | EuDML 103948 | MR 646078 | Zbl 0374.57002