@incollection{AST_1984__113-114__198_0, author = {Halperin, Stephen}, title = {Spaces whose rational homology and de {Rham} homotopy are both finite dimensional}, booktitle = {Homotopie alg\'ebrique et alg\`ebre locale}, author = {Collectif}, series = {Ast\'erisque}, publisher = {Soci\'et\'e math\'ematique de France}, number = {113-114}, year = {1984}, mrnumber = {749058}, zbl = {0546.55015}, language = {en}, url = {http://www.numdam.org/item/AST_1984__113-114__198_0/} }
TY - CHAP AU - Halperin, Stephen TI - Spaces whose rational homology and de Rham homotopy are both finite dimensional BT - Homotopie algébrique et algèbre locale AU - Collectif T3 - Astérisque PY - 1984 DA - 1984/// IS - 113-114 PB - Société mathématique de France UR - http://www.numdam.org/item/AST_1984__113-114__198_0/ UR - https://www.ams.org/mathscinet-getitem?mr=749058 UR - https://zbmath.org/?q=an%3A0546.55015 LA - en ID - AST_1984__113-114__198_0 ER -
Halperin, Stephen. Spaces whose rational homology and de Rham homotopy are both finite dimensional, in Homotopie algébrique et algèbre locale, Astérisque, no. 113-114 (1984), pp. 198-205. http://www.numdam.org/item/AST_1984__113-114__198_0/
[1] Rational homotopy groups of certain spaces, Invent. Math. 53 (1979) p. 117-133. | DOI | EuDML | MR | Zbl
and[2] Finiteness in the minimal models of Sullivan. Trans. Amer. Math. Soc. 230 (1977) p. 173-199. | DOI | MR | Zbl
.[3] Rational fibrations, minimal models and the fibring of homogeneous spaces. Trans. Amer. Math. Soc. 244 (1978) p. 199-223. | DOI | MR | Zbl
.[4] Infinitesimal Computations in Topology. Inst. Hautes Etudes Sci. Publ. Math. 47 (1978) p. 269-331). | DOI | EuDML | MR | Zbl
,