A Carleson-type estimate in Lipschitz type domains for non-negative solutions to Kolmogorov operators
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 12 (2013) no. 2, p. 439-465

We prove a Carleson type estimate, in Lipschitz type domains, for non-negative solutions to a class of second order degenerate differential operators of Kolmogorov type of the form

Ł=i,j=1mai,j(z)xixj+i=1mai(z)xi+i,j=1Nbi,jxixj-t,

where z=(x,t) N+1 , 1mN. Our estimate is scale-invariant and generalizes previous results valid for second order uniformly parabolic equations to the class of operators considered.

Published online : 2019-02-21
Classification:  35K65,  35K70,  35H20,  35R03
@article{ASNSP_2013_5_12_2_439_0,
     author = {Cinti, Chiara and Nystr\"om, Kaj and Polidoro, Sergio},
     title = {A Carleson-type estimate in Lipschitz type domains for non-negative solutions to Kolmogorov operators},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 12},
     number = {2},
     year = {2013},
     pages = {439-465},
     zbl = {1277.35081},
     mrnumber = {3114009},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2013_5_12_2_439_0}
}
Cinti, Chiara; Nyström, Kaj; Polidoro, Sergio. A Carleson-type estimate in Lipschitz type domains for non-negative solutions to Kolmogorov operators. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 12 (2013) no. 2, pp. 439-465. http://www.numdam.org/item/ASNSP_2013_5_12_2_439_0/

[1] P. Bauman, Positive solutions of elliptic equations in nondivergence form and their adjoints, Ark. Mat. 22 (1984), 153–173. | MR 765409 | Zbl 0557.35033

[2] L. Caffarelli, E. Fabes, S. Mortola and S. Salsa, Boundary behavior of nonnegative solutions of elliptic operators in divergence form, Indiana Univ. Math. J. 30 (1981), 621–640. | MR 620271 | Zbl 0512.35038

[3] L. Carleson, On the existence of boundary values for harmonic functions in several variables, Ark. Mat. 4 (1962), 393–399. | MR 159013 | Zbl 0107.08402

[4] L. Capogna and N. Garofalo, Boundary behavior of nonnegative solutions of subelliptic equations in NTA domains for Carnot-Carathéodory metrics, J. Fourier Anal. Appl. 4 (1998), 403–432. | MR 1658616 | Zbl 0926.35043

[5] L. Capogna, N. Garofalo and D. M. Nhieu, Examples of uniform and NTA domains in Carnot groups, In: “Proceedings on Analysis and Geometry” (Russian) (Novosibirsk Akademgorodok, 1999), 103–121, Izdat. Ross. Akad. Nauk Sib. Otd. Inst. Mat., Novosibirsk, 2000. | MR 1847513 | Zbl 1017.30020

[6] C. Cinti, K. Nyström and S. Polidoro, A boundary estimate for non-negative solutions to Kolmogorov operators in non-divergence form, Ann. Mat. Pura Appl. (4) 191 (2012), 1–23. | MR 2886159 | Zbl 1241.35127

[7] C. Cinti, K. Nyström and S. Polidoro, A note on Harnack inequalities and propagation sets for a class of hypoelliptic operators, Potential Anal. 33 (2010), 341–354. | MR 2726902 | Zbl 1207.35102

[8] D. Danielli, N. Garofalo and A. Petrosyan, The sub-elliptic obstacle problem: C 1,α regularity of the free boundary in Carnot groups of step two, Adv. Math. 211 (2007), 485–516. | MR 2323535 | Zbl 1114.35050

[9] D. Danielli, N. Garofalo and S. Salsa, Variational inequalities with lack of ellipticity. I. Optimal interior regularity and non-degeneracy of the free boundary, Indiana Univ. Math. J. 52 (2003), 361–398. | MR 1976081 | Zbl 1030.35091

[10] M. Di Francesco, A. Pascucci and S. Polidoro, The obstacle problem for a class of hypoelliptic ultraparabolic equations, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 464 (2008), 155–176. | MR 2434049 | Zbl 1137.35017

[11] M. Di Francesco and S. Polidoro, Schauder estimates, Harnack inequality and Gaussian lower bound for Kolmogorov-type operators in non-divergence form, Adv. Differential Equations 11 (2006), 1261–1320. | MR 2277064 | Zbl 1153.35312

[12] E. Fabes, N. Garofalo, S. Marín-Malave and S. Salsa, Fatou theorems for some nonlinear elliptic equations, Rev. Mat. Iberoamericana 4 (1988), 227–251. | MR 1028741 | Zbl 0703.35058

[13] E. B. Fabes, N. Garofalo and S. Salsa, A backward Harnack inequality and Fatou theorem for nonnegative solutions of parabolic equations, Illinois J. Math. 30 (1986), 536–565. | MR 857210 | Zbl 0625.35006

[14] E. B. Fabes andC. E. Kenig, Examples of singular parabolic measures and singular transition probability densities, Duke Math. J. 48 (1981), 845–856. | MR 782580 | Zbl 0482.35021

[15] E. B. Fabes and M. V. Safonov, Behavior near the boundary of positive solutions of second order parabolic equations, In: “Proceedings of the conference dedicated to Professor Miguel de Guzmán” (El Escorial, 1996), Vol. 3 (1997), 871–882. | MR 1600211 | Zbl 0939.35082

[16] E. B. Fabes, M. V. Safonov and Y. Yuan, Behavior near the boundary of positive solutions of second order parabolic equations. II, Trans. Amer. Math. Soc. 351 (1999), 4947–4961. | MR 1665328 | Zbl 0976.35031

[17] E. B. Fabes and D. W. Stroock, A new proof of Moser’s parabolic Harnack inequality using the old ideas of Nash, Arch. Ration. Mech. Anal. 96 (1986), 327–338. | MR 855753 | Zbl 0652.35052

[18] F. Ferrari and B. Franchi, Geometry of the boundary and doubling property of the harmonic measure for Grushin type operators, Rend. Sem. Mat. Univ. Politec. Torino 58 (2000), 281–299 (2002). Partial differential operators (Torino, 2000). | MR 1984194 | Zbl 1072.35060

[19] F. Ferrari and B. Franchi, A local doubling formula for the harmonic measure associated with subelliptic operators and applications, Comm. Partial Differential Equations 28 (2003), 1–60. | MR 1974448 | Zbl 1094.35035

[20] M. Frentz, N. Garofalo, E. Götmark, I. Munive and K. Nyström, Non-divergence form parabolic equations associated with non-commuting vector fields: boundary behavior of nonnegative solutions, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 11 (2012), 437–474. | Numdam | MR 3011998 | Zbl 1258.31005

[21] M. Frentz, K. Nyström, A. Pascucci and S. Polidoro, Optimal regularity in the obstacle problem for Kolmogorov operators related to American Asian options, Math. Ann. (2010), 805–838. | MR 2658144 | Zbl 1200.35307

[22] N. Garofalo, Second order parabolic equations in nonvariational forms: boundary Harnack principle and comparison theorems for nonnegative solutions, Ann. Mat. Pura Appl. 138 (1984), 267–296. | MR 779547 | Zbl 0574.35039

[23] S. Hofmann and J. L. Lewis, “The Dirichlet Problem for Parabolic Operators with Singular drift Terms”, Mem. Amer. Math. Soc., Vol. 151, 2001, viii+113. | MR 1828387 | Zbl 1149.35048

[24] L. Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147–171. | MR 222474 | Zbl 0156.10701

[25] D. S. Jerison and C. E. Kenig, Boundary behavior of harmonic functions in nontangentially accessible domains, Adv. Math. 46 (1982), 80–147. | MR 676988 | Zbl 0514.31003

[26] C. E. Kenig and J. Pipher, The Dirichlet problem for elliptic equations with drift terms, Publ. Mat. 45 (2001), 199–217. | MR 1829584 | Zbl 1113.35314

[27] N. V. Krylov and M. V. Safonov, A property of the solutions of parabolic equations with measurable coefficients, Izv. Akad. Nauk SSSR Ser. Mat. 44 (1980), 161–175, 239. | MR 563790 | Zbl 0439.35023

[28] E. Lanconelli and S. Polidoro, On a class of hypoelliptic evolution operators, Rend. Sem. Mat. Univ. Politec. Torino 52 (1994), 29–63. Partial differential equations, II (Turin, 1993). | MR 1289901 | Zbl 0811.35018

[29] E. B. Lee and L. Markus, “Foundations of Optimal Control Theory”, Robert E. Krieger Publishing Co. Inc., Melbourne, FL, second ed., 1986. | MR 889459 | Zbl 0159.13201

[30] M. Manfredini, The Dirichlet problem for a class of ultraparabolic equations, Adv. Differential Equations 2 (1997), 831–866. | MR 1751429 | Zbl 1023.35518

[31] K. Nyström, The Dirichlet problem for second order parabolic operators, Indiana Univ. Math. J. 46 (1997), 183–245. | MR 1462802 | Zbl 0878.35010

[32] K. Nyström, A. Pascucci and S. Polidoro, Regularity near the initial state in the obstacle problem for a class of hypoelliptic ultraparabolic operators, J. Differential Equations 249 (2010), 2044–2060. | MR 2679015 | Zbl 1205.35345

[33] M. V. Safonov and Y. Yuan, Doubling properties for second order parabolic equations, Ann. of Math. 150 (1999), 313–327. | MR 1715327 | Zbl 1157.35391

[34] S. Salsa, Some properties of nonnegative solutions of parabolic differential operators, Ann. Mat. Pura Appl. 128 (1981), 193–206. | MR 640782 | Zbl 0477.35049