Multiply monogenic orders
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 12 (2013) no. 2, pp. 467-497.

Let $A=ℤ\left[{x}_{1},...,{x}_{r}\right]\supset ℤ$ be a domain which is finitely generated over $ℤ$ and integrally closed in its quotient field $L$. Further, let $K$ be a finite extension field of $L$. An $A$-order in $K$ is a domain $𝒪\supset A$ with quotient field $K$ which is integral over $A$. $A$-orders in $K$ of the type $A\left[\alpha \right]$ are called monogenic. It was proved by Győry  that for any given $A$-order $𝒪$ in $K$ there are at most finitely many $A$-equivalence classes of $\alpha \in 𝒪$ with $A\left[\alpha \right]=𝒪$, where two elements $\alpha ,\beta$ of $𝒪$ are called $A$-equivalent if $\beta =u\alpha +a$ for some $u\in {A}^{*}$, $a\in A$. If the number of $A$-equivalence classes of $\alpha$ with $A\left[\alpha \right]=𝒪$ is at least $k$, we call $𝒪$ $k$ times monogenic.

In this paper we study orders which are more than one time monogenic. Our first main result is that if $K$ is any finite extension of $L$ of degree $\ge 3$, then there are only finitely many three times monogenic $A$-orders in $K$. Next, we define two special types of two times monogenic $A$-orders, and show that there are extensions $K$ which have infinitely many orders of these types. Then under certain conditions imposed on the Galois group of the normal closure of $K$ over $L$, we prove that $K$ has only finitely many two times monogenic $A$-orders which are not of these types. Some immediate applications to canonical number systems are also mentioned.

Publié le :
Classification : 11R99,  11D99,  11J99
@article{ASNSP_2013_5_12_2_467_0,
author = {B\'erczes, Attila and Evertse, Jan-Hendrik and Gy\H{o}ry, K\'alm\'an},
title = {Multiply monogenic orders},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {467--497},
publisher = {Scuola Normale Superiore, Pisa},
volume = {Ser. 5, 12},
number = {2},
year = {2013},
zbl = {1319.11070},
mrnumber = {3114010},
language = {en},
url = {http://www.numdam.org/item/ASNSP_2013_5_12_2_467_0/}
}
Bérczes, Attila; Evertse, Jan-Hendrik; Győry, Kálmán. Multiply monogenic orders. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 12 (2013) no. 2, pp. 467-497. http://www.numdam.org/item/ASNSP_2013_5_12_2_467_0/

 A. Bérczes, On the number of solutions of index form equations, Publ. Math. Debrecen 56 (2000), 251–262. | MR 1765979 | Zbl 0961.11010

 H. Brunotte, A. Huszti and A. Pethő, Bases of canonical number systems in quartic algebraic number fields, J. Théor. Nombres Bordeaux 18 (2006), 537–557. | EuDML 249640 | Numdam | MR 2330426 | Zbl 1193.11099

 N. Bourbaki, “Commutative Algebra”, Chapters 1–7, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 1989. | MR 979760 | Zbl 0673.00001

 R. Dedekind, Über die Zusammenhang zwischen der Theorie der Ideale und der Theorie der höheren Kongruenzen, Abh. König. Ges. Wissen. Göttingen 23 (1878), 1–23. | EuDML 135827

 J.-H. Evertse and K. Győry, On unit equations and decomposable form equations, J. Reine Angew. Math. 358 (1985), 6–19. | EuDML 152718 | MR 797671 | Zbl 0552.10010

 J.-H. Evertse, K. Győry, C. L. Stewart and R. Tijdeman, On $S$-unit equations in two unknowns, Invent. Math. 92 (1988), 461–477. | EuDML 143578 | MR 939471 | Zbl 0662.10012

 K. Győry, Sur les polynômes à coefficients entiers et de discriminant donné, Acta Arith. 23 (1973), 419–426. | EuDML 205206 | MR 437489 | Zbl 0269.12001

 K. Győry, Sur les polynômes à coefficients entiers et de dicriminant donné $\mathrm{III}$, Publ. Math. Debrecen 23 (1976), 141–165. | MR 437491 | Zbl 0354.10041

 K. Győry, Corps de nombres algébriques d’anneau d’entiers monogène, In: “Séminaire Delange-Pisot-Poitou”, 20e année: 1978/1979. Théorie des nombres, Fasc. 2 (French), Secrétariat Math., Paris, 1980, pp. Exp. No. 26, 7. | EuDML 111038 | Numdam | MR 582432 | Zbl 0433.12001

 K. Győry, On certain graphs associated with an integral domain and their applications to Diophantine problems, Publ. Math. Debrecen 29 (1982), 79–94. | MR 673141 | Zbl 0522.10013

 K. Győry, Effective finiteness theorems for polynomials with given discriminant and integral elements with given discriminant over finitely generated domains, J. Reine Angew. Math. 346 (1984), 54–100. | EuDML 152587 | MR 727397 | Zbl 0519.13008

 K. Győry, Upper bounds for the number of solutions of unit equations in two unknowns, Lithuanian Math. J. 32 (1992), 40–44. | MR 1206381 | Zbl 0814.11018

 K. Győry, Polynomials and binary forms with given discriminant, Publ. Math. Debrecen 69 (2006), 473–499. | MR 2274970 | Zbl 1121.11073

 L.-C. Kappe and B. Warren, An elementary test for the Galois group of a quartic polynomial, Amer. Math. Monthly 96 (1989), 133–137. | MR 992075 | Zbl 0702.11075

 B. Kovács, Canonical number systems in algebraic number fields, Acta Math. Acad. Sci. Hungar. 37 (1981), 405–407. | MR 619892 | Zbl 0505.12001

 B. Kovács and A. Pethő, Number systems in integral domains, especially in orders of algebraic number fields, Acta Sci. Math. 55 (1991), 287–299. | MR 1152592 | Zbl 0760.11002

 S. Lang, Integral points on curves, Inst. Hautes Études Sci. Publ. Math. 6 (1960), 27–43. | EuDML 103820 | Numdam | MR 130219 | Zbl 0112.13402

 M. Laurent, Équations diophantiennes exponentielles, Invent. Math. 78 (1984), 299–327. | EuDML 143175 | MR 767195 | Zbl 0554.10009

 P. Roquette, Einheiten und Divisorklassen in endlich erzeugbaren Körpern, Jber. Deutsch. Math. Verein 60 (1957), 1–21. | EuDML 146429 | MR 104652 | Zbl 0079.26901

 B.L. van der Waerden, “Algebra I” (8. Auflage), Springer Verlag, 1971. | MR 177027 | Zbl 0221.12001