Sharp estimates for bubbling solutions of a fourth order mean field equation
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 6 (2007) no. 4, p. 599-630

We consider a sequence of multi-bubble solutions ${u}_{k}$ of the following fourth order equation $\phantom{\rule{2em}{0ex}}\phantom{\rule{2em}{0ex}}\phantom{\rule{-0.166667em}{0ex}}{\Delta }^{2}{u}_{k}={\rho }_{k}\frac{h\left(x\right){e}^{{u}_{k}}}{{\int }_{\Omega }h{e}^{{u}_{k}}}\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}\text{in}\phantom{\rule{4pt}{0ex}}\Omega ,\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}{u}_{k}=\Delta {u}_{k}=0\phantom{\rule{4pt}{0ex}}\phantom{\rule{4pt}{0ex}}\text{on}\phantom{\rule{4pt}{0ex}}\partial \Omega ,\phantom{\rule{2em}{0ex}}\phantom{\rule{2em}{0ex}}\phantom{\rule{2em}{0ex}}\left(*\right)$ where $h$ is a ${C}^{2,\beta }$ positive function, $\Omega$ is a bounded and smooth domain in ${ℝ}^{4}$, and ${\rho }_{k}$ is a constant such that ${\rho }_{k}\phantom{\rule{-0.166667em}{0ex}}\le \phantom{\rule{-0.166667em}{0ex}}C$. We show that (after extracting a subsequence), ${lim}_{k\to +\infty }{\rho }_{k}\phantom{\rule{-0.166667em}{0ex}}=\phantom{\rule{-0.166667em}{0ex}}32{\sigma }_{3}m$ for some positive integer $m\phantom{\rule{-0.166667em}{0ex}}\ge \phantom{\rule{-0.166667em}{0ex}}1$, where ${\sigma }_{3}$ is the area of the unit sphere in ${ℝ}^{4}$. Furthermore, we obtain the following sharp estimates for ${\rho }_{k}$: $\begin{array}{cc}\hfill {\rho }_{k}\phantom{\rule{-0.166667em}{0ex}}-\phantom{\rule{-0.166667em}{0ex}}32{\sigma }_{3}m\phantom{\rule{-0.166667em}{0ex}}& =\phantom{\rule{-0.166667em}{0ex}}{c}_{0}\sum _{j=1}^{m}\phantom{\rule{-0.166667em}{0ex}}{ϵ}_{k,j}^{2}\phantom{\rule{-0.166667em}{0ex}}\left(\sum _{l\ne j}\Delta {G}_{4}\left({p}_{j},\phantom{\rule{-0.166667em}{0ex}}{p}_{l}\right)\phantom{\rule{-0.166667em}{0ex}}+\phantom{\rule{-0.166667em}{0ex}}\Delta {R}_{4}\left({p}_{j},\phantom{\rule{-0.166667em}{0ex}}{p}_{j}\right)\phantom{\rule{-0.166667em}{0ex}}+\phantom{\rule{-0.166667em}{0ex}}\frac{1}{32{\sigma }_{3}}\Delta logh\left({p}_{j}\right)\phantom{\rule{-0.166667em}{0ex}}\right)\phantom{\rule{-2.0pt}{0ex}}\hfill \\ & \phantom{\rule{1em}{0ex}}+o\left(\sum _{j=1}^{m}{ϵ}_{k,j}^{2}\right)\hfill \end{array}$ where ${c}_{0}\phantom{\rule{-0.166667em}{0ex}}>\phantom{\rule{-0.166667em}{0ex}}0$, $log\frac{64}{{ϵ}_{k,j}^{4}}\phantom{\rule{-0.166667em}{0ex}}=\phantom{\rule{-0.166667em}{0ex}}\phantom{\rule{-0.166667em}{0ex}}\phantom{\rule{-0.166667em}{0ex}}\underset{x\in {B}_{\delta }\left({p}_{j}\right)}{max}\phantom{\rule{-0.166667em}{0ex}}{u}_{k}\left(x\right)\phantom{\rule{-0.166667em}{0ex}}-\phantom{\rule{-0.166667em}{0ex}}log\left(\underset{\Omega }{\int }h{e}^{{u}_{k}}\right)$ and ${u}_{k}\phantom{\rule{-0.166667em}{0ex}}\to \phantom{\rule{-0.166667em}{0ex}}32{\sigma }_{3}\sum _{j=1}^{m}{G}_{4}\left(·,{p}_{j}\right)$ in ${C}_{\mathrm{loc}}^{4}\left(\Omega \setminus \left\{{p}_{1},...,{p}_{m}\right\}\right)$. This yields a bound of solutions as ${\rho }_{k}$ converges to $32{\sigma }_{3}m$ from below provided that $\sum _{j=1}^{m}\left(\sum _{l\ne j}\Delta {G}_{4}\left({p}_{j},{p}_{l}\right)+\Delta {R}_{4}\left({p}_{j},{p}_{j}\right)+\frac{1}{32{\sigma }_{3}}\Delta logh\left({p}_{j}\right)\right)>0.$ The analytic work of this paper is the first step toward computing the Leray-Schauder degree of solutions of equation $\left(*\right)$.

Classification:  35B40,  35B45,  35J40
@article{ASNSP_2007_5_6_4_599_0,
author = {Lin, Chang-Shou and Wei, Juncheng},
title = {Sharp estimates for bubbling solutions of a fourth order mean field equation},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
publisher = {Scuola Normale Superiore, Pisa},
volume = {Ser. 5, 6},
number = {4},
year = {2007},
pages = {599-630},
zbl = {1185.35067},
mrnumber = {2394412},
language = {en},
url = {http://www.numdam.org/item/ASNSP_2007_5_6_4_599_0}
}
Lin, Chang-Shou; Wei, Juncheng. Sharp estimates for bubbling solutions of a fourth order mean field equation. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 6 (2007) no. 4, pp. 599-630. http://www.numdam.org/item/ASNSP_2007_5_6_4_599_0/

 Adimurthi, F. Robert and M. Struwe, Concentration phenomena for Liuville equations in dimension four, J. Eur. Math. Soc. 8 (2006), 171-180. | MR 2239297 | Zbl pre05053356

 H. Brezis and F. Merle, Uniform estimates and blow-up behavior for solutions of $-\Delta u=V\left(x\right){e}^{u}$ i ntwo dimensions, Comm. Partial Differential Equation 16 (1991), 1223-1254. | MR 1132783 | Zbl 0746.35006

 S. Baraket, M. Dammak, T. Ouni, and F. Pacard, Singular limits for 4-dimensional semilinear elliptic problems with exponential nonlinearity, Ann. Inst. H. Poincaré Anal. Non Linéaire 24 (2007), 875-895. | Numdam | MR 2371110 | Zbl 1132.35038

 D. Bartolucci, C.-C. Chen, C.-S. Lin and G. Tarantello, Profile of blow-up solutions to mean field equations with singular data, Comm. Partial Differential Equations 29 (2004), 1241-1265. | MR 2097983 | Zbl 1062.35146

 H. Brezis, Y. Y. Li and I. Shafrir, A $\mathrm{sup}+\mathrm{inf}$ inequality for some nonlinear elliptic equations involving exponential nonlinearities, J. Funct. Anal. 115 (1993), 344-358. | MR 1234395 | Zbl 0794.35048

 S-Y A. Chang and P. C. Yang, Extremal metrics of zeta function determinants on 4-manifolds, Ann. of Math. 142 (1995), 171-212. | MR 1338677 | Zbl 0842.58011

 C. C Chen and C. S. Lin, Sharp estimates for solutions of multi-bubbles in compact Riemann surface, Comm. Pure Appl. Math. 55 (2002), 728-771. | MR 1885666 | Zbl 1040.53046

 C. C. Chen and C. S. Lin, Topological degree for a mean field equation on Riemann surfaces, Comm. Pure Appl. Math. 56 (2003), 1667-1727. | MR 2001443 | Zbl 1032.58010

 O. Druet and F. Robert, Bubbling phenomena for fourth-order four-dimensional PDEs with exponential growth, Proc. Amer. Math. Soc. 134 (2006), 897-908. | MR 2180908 | Zbl 1083.58018

 E. Hebey and F. Robert, Coercivity and Struwe's compactness for Paneitz type operators with constant coefficients, Cal. Var. Partial Differential Equations 13 (2001), 491-517. | MR 1867939 | Zbl 0998.58007

 E. Hebey, F. Robert and Y. Wen, Compactness and global estimates for a fourth order equation with critical Sobolev growth arising from conformal geometry, Comm. Contemp. Math. 8 (2006), 9-65. | MR 2208810 | Zbl 1133.58027

 Y. Y. Li, Harnack inequality: the method of moving planes, Comm. Math. Phys. 200 (1999), 421-444. | MR 1673972 | Zbl 0928.35057

 Y. Y. Li and I. Shafrir, Blow-up analysis for solutions of $-\Delta u=V{e}^{u}$ in dimension two, Indiana Univ. Math. J. 43 (1994), 1255-1270. | MR 1322618 | Zbl 0842.35011

 C. S. Lin, Locating the peaks of solutions to a Neumann problem via the maximum principle, I: The Neumann problem, Comm. Pure Appl. Math. 56 (2001), 1065-1095. | MR 1835382 | Zbl 1035.35039

 C. S. Lin, A classification of solutions of a conformally invariant fourth order equation in ${R}^{4}$, Comment. Math. Helv. 73 (1998), 206-231. | MR 1611691 | Zbl 0933.35057

 C. S. Lin and J.-C. Wei, Locating the peaks of solutions via the maximum principle. II. A local version of the method of moving planes, Comm. Pure Appl. Math. 56 (2003), 784-809. | MR 1959740 | Zbl 1121.35310

 C. S. Lin, L.-P. Wang and J.-C. Wei, Topological degree for 4-dimensional mean field equations, submitted.

 L. Ma and J. Wei, Convergence for a Liouville equation, Comment. Math. Helv. 76 (2001), 506-514. | MR 1854696 | Zbl 0987.35056

 A. Malchiodi, Compactness of solutions to some geometric fourth-order equations, J. Reine Angew. Math. 594 (2006), 137-174. | MR 2248155 | Zbl 1098.53032

 A. Malchiodi, Morse theory and a scalar field equation on compact surfaces, preprint. | MR 2483132 | Zbl 1175.53052

 K. Nagasaki and T. Suzuki, Asymptotic analysis for two-dimensional elliptic eigenvalue problems with exponentially dominated nonlinearity, Asymptot. Anal. 3 (1990), 173-188. | MR 1061665 | Zbl 0726.35011

 J. C. Wei and X. W. Xu, Classification of solutions of higher order conformally invariant equations, Math. Ann. 313 (1999), 207-228. | MR 1679783 | Zbl 0940.35082

 J. Wei, Asymptotic behavior of a nonlinear fourth order eigenvalue problem, Comm. Partial Differential Equations 21 (1996), 1451-1467. | MR 1410837 | Zbl 0872.35013