Rational fixed points for linear group actions
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 6 (2007) no. 4, pp. 561-597.

We prove a version of the Hilbert Irreducibility Theorem for linear algebraic groups. Given a connected linear algebraic group $G$, an affine variety $V$ and a finite map $\pi :V\to G$, all defined over a finitely generated field $\kappa$ of characteristic zero, Theorem 1.6 provides the natural necessary and sufficient condition under which the set $\pi \left(V\left(\kappa \right)\right)$ contains a Zariski dense sub-semigroup $\Gamma \subset G\left(\kappa \right)$; namely, there must exist an unramified covering $p:\stackrel{˜}{G}\to G$ and a map $\theta :\stackrel{˜}{G}\to V$ such that $\pi \circ \theta =p$. In the case $\kappa =ℚ$, $G={𝔾}_{a}$ is the additive group, we reobtain the original Hilbert Irreducibility Theorem. Our proof uses a new diophantine result, due to Ferretti and Zannier [9]. As a first application, we obtain (Theorem 1.1) a necessary condition for the existence of rational fixed points for all the elements of a Zariski-dense sub-semigroup of a linear group acting morphically on an algebraic variety. A second application concerns the characterisation of algebraic subgroups of ${GL}_{N}$ admitting a Zariski-dense sub-semigroup formed by matrices with at least one rational eigenvalue.

Classification : 11G35,  14G25
@article{ASNSP_2007_5_6_4_561_0,
author = {Corvaja, Pietro},
title = {Rational fixed points for linear group actions},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
pages = {561--597},
publisher = {Scuola Normale Superiore, Pisa},
volume = {Ser. 5, 6},
number = {4},
year = {2007},
zbl = {1207.11067},
mrnumber = {2394411},
language = {en},
url = {http://www.numdam.org/item/ASNSP_2007_5_6_4_561_0/}
}
Corvaja, Pietro. Rational fixed points for linear group actions. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 6 (2007) no. 4, pp. 561-597. http://www.numdam.org/item/ASNSP_2007_5_6_4_561_0/

[1] J. Bernik, On groups and semigroups of matrices with spectra in a finitely generated field, Linear and Multilinear Algebra 53 (2005), 259-267. | MR 2160409 | Zbl 1085.15020

[2] J. Bernik and J. Okniński, On semigroups of matrices with eigenvalue $1$ in small dimension, Linear Algebra Appl. 405 (2005), 67-73. | MR 2148162 | Zbl 1079.15017

[3] E. Bombieri, D. Masser and U. Zannier, Intersecting a curve with algebraic subgroups of multiplicative groups, Int. Math. Res. Not. 20 (1999), 1119-1140. | MR 1728021 | Zbl 0938.11031

[4] A. Borel, “Introduction aux groupes arithmétiques”, Hermann, Paris, 1969. | MR 244260 | Zbl 0186.33202

[5] A. Borel, “Linear Algebraic Groups”, 2nd Edition, GTM 126, Springer Verlag, 1997. | MR 1102012 | Zbl 0726.20030

[6] C. W. Curtis and I. Reiner, “Representation Theory of Finite Groups and Associative Algebras”, John Wiley & Sons, 1962. | Zbl 0131.25601

[7] P. Dèbes, On the irreducibility of the polynomial $P\left({t}^{m},Y\right)$, J. Number Theory, 42 (1992), 141-157. | MR 1183373 | Zbl 0770.12005

[8] R. Dvornicich and U. Zannier, Cyclotomic diophantine problems (Hilbert irreducibility and invariant sets for polynomial maps), Duke Math. J., to appear. | MR 2350852 | Zbl 1127.11040

[9] A. Ferretti and U. Zannier, Equations in the Hadamard ring of rational functions, Ann. Scuola Norm. Sup. Cl. Sci. 6 (2007), 457-475. | EuDML 272259 | Numdam | MR 2370269 | Zbl 1150.11008

[10] D. Hilbert, Ueber die Irreducibilität ganzer rationaler Functionen mit ganzzahligen Coefficienten, J. Reine Angew. Math. 110 (1892), 104-129. | JFM 24.0087.03

[11] S. Lang, “Fundamentals of Diophantine Geometry”, Springer Verlag, 1984. | MR 715605 | Zbl 0528.14013

[12] M. Laurent, Equations diophantiennes exponentielles et suites récurrentes linéaires II, J. Number Theory 31 (1988), 24-53. | MR 978098 | Zbl 0661.10027

[13] D. W. Masser, Specializations of finitely generated subgroups of abelian varieties, Trans. Amer. Math. Soc. 311 (1989), 413-424. | MR 974783 | Zbl 0673.14016

[14] A. Van Der Poorten, Some facts that should be better known, especially about rational functions, In: “Number Theory and Applications (Banff, AB 1988)”, Kluwer Acad. Publ., Dordrecht (1989), 497-528. | MR 1123092 | Zbl 0687.10007

[15] G. Prasad and A. Rapinchuk, Existence of irreducible $ℝ$-regular elements in Zariski-dense subgroups, Math. Res. Lett. 10 (2003), 21-32. | MR 1960120 | Zbl 1029.22020

[16] G. Prasad and A. Rapinchuk, Zariski-dense subgroups and transcendental number theory, Math. Res. Lett. 12 (2005), 239-249. | MR 2150880 | Zbl 1072.22009

[17] R. Rumely, Notes on van der Poorten proof of the Hadamard quotient theorem II, In: “Séminaire de Théorie des Nombres de Paris 1986-87”, Progress in Mathematics, Birkhäuser, 1988. | MR 990517 | Zbl 0661.10017

[18] J.-P. Serre, “Lectures on the Mordell-Weil Theorem”, 3rd Edition, Vieweg-Verlag, 1997. | MR 1757192 | Zbl 0863.14013

[19] W. M. Schmidt, Linear Recurrence Sequences and Polynomial-Exponential Equations, In: “Diophantine Approximation”, F. Amoroso and U. Zannier (eds.), Proceedings of the C.I.M.E. Conference, Cetraro 2000, Springer LNM 1829, 2003. | MR 2009831 | Zbl 1034.11011

[20] U. Zannier, A proof of Pisot’s $d$-th root conjecture, Ann. of Math. 151 (2000), 375-383. | MR 1745008 | Zbl 0995.11007

[21] U. Zannier, “Some Applications of Diophantine Approximations to Diophantine Equations”, Forum Editrice, Udine, 2003. | Zbl 0341.10017