A simple proof of the propagation of singularities for solutions of Hamilton-Jacobi equations
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Volume 5 (2006) no. 4, p. 439-444
In Albano-Cannarsa [1] the authors proved that, under some conditions, the singularities of the semiconcave viscosity solutions of the Hamilton-Jacobi equation propagate along generalized characteristics. In this note we will provide a simple proof of this interesting result.
Classification:  35F20,  35D99
@article{ASNSP_2006_5_5_4_439_0,
     author = {Yu, Yifeng},
     title = {A simple proof of the propagation of singularities for solutions of Hamilton-Jacobi equations},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 5},
     number = {4},
     year = {2006},
     pages = {439-444},
     zbl = {1150.35002},
     mrnumber = {2297718},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2006_5_5_4_439_0}
}
Yu, Yifeng. A simple proof of the propagation of singularities for solutions of Hamilton-Jacobi equations. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Volume 5 (2006) no. 4, pp. 439-444. http://www.numdam.org/item/ASNSP_2006_5_5_4_439_0/

[1] P. Albano and P. Cannarsa, Propagation of singularities for solutions of nonlinear first order partial differential equations, Arch. Ration. Mech. Anal. 162 (2002), 1-23. | MR 1892229 | Zbl 1043.35052

[2] P. Albano and P. Cannarsa, Structural properties of singularities of semiconcave functions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28 (1999), 719-740. | Numdam | MR 1760538 | Zbl 0957.26002

[3] L. Ambrosio, P. Cannarsa and H. M. Soner, On the propagation of singularities of semi-convex functions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 20 (1993), 597-616. | Numdam | MR 1267601 | Zbl 0874.49041

[4] P. Cannarsa and C. Sinestrari, “Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control”, Progress in Nonlinear Differential Equations and their Applications, Vol. 58, Birkhäuser Boston, Inc., Boston, MA, 2004. | MR 2041617 | Zbl 1095.49003

[5] L. C. Evans, “Partial Differential Equations”, Graduate Studies in Mathematics, Vol. 19, American Mathematical Society, Providence, RI, 1998. | MR 1625845 | Zbl 0902.35002