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A simple proof of the propagation of singularities for solutions
of Hamilton-Jacobi equations

YIFENG YU

Abstract. In Albano-Cannarsa [1] the authors proved that, under some condi-
tions, the singularities of the semiconcave viscosity solutions of the Hamilton-
Jacobi equation propagate along generalized characteristics. In this note we will
provide a simple proof of this interesting result.
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1. Introduction

Let � be a bounded open subset of Rn . Throughout this note we assume that
u ∈ C(�̄) is a semiconcave viscosity solution of the following Hamilton-Jacobi
equation

H(Du, u, x) = 0 in �. (1.1)

For x ∈ � we set

D+u(x) = {p ∈ Rn| u(y) ≤ u(x) + p · (y − x) + o(|x − y|)}.

As in [1], we assume that H ∈ C1(Rn × R × �) and satisfies

(A1) H(·, z, x) is convex for each (z, x) ∈ R × �;
(A2) For each (z, x) ∈ R×�, the 0-level set {p| H(p, z, x) = 0} does not contain

any line segment.

We want to remark that under the convexity assumption (A1), u is a semiconcave
viscosity solution of equation (1.1) if and only if u is semiconcave and satisfies
equation (1.1) almost everywhere. For K ⊂ Rn , we denote co(K ) as the convex
hull of K . Using some results in Albano-Cannarsa [2] about the propagation of the
singularities for semiconcave functions, Albano and Cannarsa proved the following
interesting theorem in [1].
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Theorem 1.1. If x0 ∈ �(u) and 0 �∈ co(Dp H(D+u(x0), u(x0), x0)) then there
exists σ > 0 and a Lipschitz continuous curve ξ(s) : [0, σ ] → �(u) such that{

ξ̇ (s) ∈ co(Dp H(D+u(ξ(s)), u(ξ(s)), ξ(s))) �� 0 for a.e. s ∈ [0, σ ]
ξ(0) = x0,

and
max

0≤s≤σ
min

p∈D+u(ξ(s))
H(p, u(ξ(s)), ξ(s)) < 0,

where
�(u) = {x ∈ �| u is not differentiable at x}.

The proof in [1] is very technical. The techniques and methods used there are im-
portant for studying the singularities for general semiconcave functions. For the
semiconcave viscosity solution u of equation (1.1), we can in fact give a simple
proof of Theorem 1.1 by approximating u with smooth functions. See [1] for more
backgrounds and comments in the singularities of semiconcave viscosity solutions
of Hamilton-Jacobi equations. We also refer to [2], Ambrosio-Cannarsa-Soner [3]
and Cannarsa-Sinestrari [4] for detailed discussions about singularities of semicon-
cave functions.

2. Proofs

Since semiconcave functions are locally Lipschitz continuous, in this section, we
assume that

esssup
�

|Du| ≤ C and D2u ≤ C In in �,

where In is the n × n identity matrix. We first prove the following lemma.

Lemma 2.1. Let V be an open subset such that x0 ∈ V ⊂ V̄ ⊂ �. If x0 ∈ �(u),
then there exist a sequence of smooth functions {um(x)}m≥1 in � such that

(i) lim
m→+∞ um = u, uniformly in V̄ ;

(ii) max
V̄

|Dum | ≤ C, D2um ≤ C Im in V ;

(iii) lim
m→+∞ Dum(x0) = q for some q ∈ D+u(x0) satisfying H(q, u(x0), x0) < 0.

Proof. Let

uε(x) = 1

εn

∫
�

u(y)η

(
x − y

ε

)
dy,

where η ∈ C∞
0 (B1(0)) and satisfies

η > 0 in B1(0) and
∫

B1(0)

η(x) dx = 1.



HAMILTON-JACOBI EQUATIONS 441

Then uε is smooth and

lim
ε→0

uε = u uniformly in V̄ .

When ε is small enough, we have that

|Duε | ≤ C and D2uε ≤ C In in V .

Case 1. If limε→0 Duε(x0) does not exist, then there exist two subsequence εm → 0
and δm → 0 such that

lim
m→+∞ Duεm (x0) = p1 �= p2 = lim

m→+∞ Duδm (x0).

We have that p1, p2 ∈ D+u(x0). Owing to (A1), H(p1, u(x0), x0) ≤ 0 and
H(p2, u(x0), x0) ≤ 0. Let

um(x) = 1

2
(uεm (x) + uδm (x)).

By (A2), we get the desired {um}m≥1.

Case 2. If limε→0 Duε(x0) exists, we denote

q = (q1, ..., qn) = lim
ε→0

Duε(x0).

According to (A1), H(q, u(x0), x0) ≤ 0. If H(q, u(x0), x0) = 0, we claim that

lim
ε→0

1

εn

∫
Bε(x0)

|Du(y) − q|η
(

x0 − y

ε

)
dy = 0.

If not, then there exists a δ > 0 and a subsequence εk → 0+ as k → +∞ such that

lim
k→+∞

1

εn
k

∫
Bεk (x0)

|Du(y) − q|η
(

x0 − y

εk

)
dy ≥ 2

√
nδ.

For i = 1, ..., n, we denote

Ai = {x ∈ Bεk (x0)| |uxi (x) − qi | ≥ δ}.
Then we must have that

lim
k→+∞

1

εn
k

∫
∪n

i=1 Ai

η

(
x0 − y

εk

)
dy > 0. (2.1)

Since

Ai = {x ∈ Bεk (x0)| uxi (x) − qi ≥ δ} ∪ {x ∈ Bεk (x0)| uxi (x) − qi ≤ −δ},
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upon passing if necessary to a subsequence, according to (2.1), without loss of
generality, we may assume that

lim
k→+∞

1

εn
k

∫
A+

1

η

(
x0 − y

εk

)
dy = τ > 0

and

lim
k→+∞

1

τεn
k

∫
A+

1

Du(y)η

(
x0 − y

εk

)
dy = q ′ = (q ′

1, ..., q ′
n)

where
A+

1 = {x ∈ Bεk (x0)| ux1(x) − q1 ≥ δ}.
Since q = limε→0 Duε(x0), we have that τ < 1. Otherwise, we have that

lim
k→+∞ uεk ,x1(x0) − q1 ≥ δ.

Therefore

lim
k→+∞

1

εn
k

∫
Bεk (x0)\A+

1

η

(
x0 − y

εk

)
dy = 1 − τ > 0

and

lim
k→+∞

1

(1 − τ)εn
k

∫
Bεk (x0)\A+

1

Du(x)η

(
x0 − y

εk

)
dy = q − τq ′

1 − τ
= q ′′.

Owing to (A1), we have that

H(q ′, u(x0), x0) ≤ 0, H(q ′′, u(x0), x0) ≤ 0. (2.2)

Also,
q = τq ′ + (1 − τ)q ′′.

By the definition of A+
1 , q ′

1 − q1 ≥ δ. Hence q ′ �= q and q ′ �= q ′′. Since
H(q, u(x0), x0) = 0, (2.2) implies that the 0-level set {p| H(p, u(x0), x0) = 0}
contains the line segment connecting q ′ and q ′′. This contradicts the assumption
(A2). So our claim holds. Since η > 0 in B1(0), we have that x0 is a Lebesgue
point of Du. So u is differentiable at x0. This is a contradiction. Therefore
H(q, u(x0), x0) < 0. So in this case we can choose uε as the desired sequence
of smooth functions.

Remark 2.2. Lemma 2.1 is still true by replacing q in (iii) with any p ∈ D+u(x0).
To prove it, we need to choose more delicate mollification of u instead of the stan-
dard mollification. For our purpose, Lemma 2.1 is enough.
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Proof of Theorem 1.1.
Step I. Choose an open set V such that x0 ∈ V ⊂ V̄ ⊂ �. Let {um}m≥1 be the
sequence of smooth functions from Lemma 2.1. By a compactness argument, it is
easy to show that for any fixed x ∈ V

Sup
{k≥m,|y−x |≤δ}

d(Duk(y), D+u(x)) → 0 as m → +∞ and δ → 0, (2.3)

and
lim
δ→0

Sup
{|y−x |≤δ}

d(Du+(y), D+u(x)) → 0.

Since 0 �∈ co(Dp H(D+u(x0), u(x0), x0)), without loss of generality, we may as-
sume that there exists a δ > 0 such that

Bδ(0)∩co
{

Dp H(Du+(x),u(x),x),Dp H(Dum(x),um(x),x)|x ∈V, m ≥1
}

= 	.
(2.4)

Hence there exits a σ > 0 such that for each m ≥ 1, there exists a C1 curve
ξm(s) : [0, σ ] → V such that

{
ξ̇m(s) = Dp H(Dum(ξm(s)), um(ξm(s)), ξm(s)) �= 0
ξm(0) = x0.

Step II. We claim that

H(Dum(ξm(s)), um(ξm(s)), ξm(s)) ≤ H(Dum(x0), um(x0), x0) + Cs, (2.5)

where C is some constant depending only on H and u. Since D2um ≤ C Im , we
have that

d

ds
H(Dum(ξm(s)),um(ξm(s)), ξm(s)) = Hpi Hp j um,xi x j + Hpi Hzum,xi + Hxi Hpi

≤C |Dp H |2+|Dp H ||Dum ||Hz|+|Dx H ||Dp H | ≤ C.

So our claim holds. We assume that limm→+∞ Dum(x0) = q. According to the
choice of um , q ∈ D+u(x0) and H(q, u(x0), x0) < 0. Owing to (2.5), if we choose
σ > 0 small enough, without loss of generality, we may assume that for m ≥ 1 and
s ∈ [0, σ ]

H(Dum(ξm(s)), um(ξm(s)), ξm(s)) ≤ 1

2
H(q, u(x0), x0) < 0. (2.6)
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Step III. Since {ξm}m≥1 is uniformly Lipschitz continuous, passing to a subsequence
if it is necessary, we assume that

lim
m→+∞ ξm(s) = ξ(s) uniformly in [0, σ ].

Hence

ξ̇m = Dp H(Dum(ξm(s)), um(ξm(s)), ξm(s)) ⇀ ξ̇(s) weakly in L2[0, σ ]. (2.7)

Owing to (2.7), a subsequence of convex combinations of ξ̇m(s) converges to ξ̇ (s)
a.e. in [0, σ ]. Hence by (2.3) and (2.4),

ξ̇ (s) ∈ co(Dp H(D+u(ξ(s)), u(ξ(s)), ξ(s))) �� 0 for a.e. s ∈ [0, σ ].

Owing to (2.3) and (2.6), we derive that

max
s∈[0,σ ]

min
p∈D+u(ξ(s))

H(p, u(ξ(s)), ξ(s)) ≤ 1

2
H(q, u(x0), x0) < 0.

Hence ξ([0, σ ]) ⊂ �(u) and

ξ̇ (s) ∈ co(Dp(H(D+u(ξ(s)), u(ξ(s)), ξ(s)))) �� 0 for a.e. s ∈ [0, σ ].
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