Non-Lipschitz coefficients for strictly hyperbolic equations
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 3 (2004) no. 3, p. 589-608
In the present paper we explain the classification of oscillations and its relation to the loss of derivatives for a homogeneous hyperbolic operator of second order. In this way we answer the open question if the assumptions to get C well posedness for weakly hyperbolic Cauchy problems or for strictly hyperbolic Cauchy problems with non-Lipschitz coefficients are optimal.
Classification:  35L15,  35L10,  35A05
@article{ASNSP_2004_5_3_3_589_0,
     author = {Hirosawa, Fumihiko and Reissig, Michael},
     title = {Non-Lipschitz coefficients for strictly hyperbolic equations},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 3},
     number = {3},
     year = {2004},
     pages = {589-608},
     zbl = {1170.35471},
     mrnumber = {2099250},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2004_5_3_3_589_0}
}
Hirosawa, Fumihiko; Reissig, Michael. Non-Lipschitz coefficients for strictly hyperbolic equations. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 3 (2004) no. 3, pp. 589-608. http://www.numdam.org/item/ASNSP_2004_5_3_3_589_0/

[1] R. Agliardi - M. Cicognani, Operators of p-evolution with non regular coefficients in the time variable, J. Differential Equations 202 (2004), 143-157. | MR 2060535 | Zbl 1065.35094

[2] M. Cicognani, Coefficients with unbounded derivatives in hyperbolic equations, to appear in Math. Nachr. | MR 2100045 | Zbl 1060.35071

[3] F. Colombini - E. De Giorgi - S. Spagnolo, Sur les equations hyperboliques avec des coefficients qui ne dependent que du temps, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 6 (1979), 511-559. | Numdam | MR 553796 | Zbl 0417.35049

[4] F. Colombini - D. Del Santo - T. Kinoshita, Well-posedness of the Cauchy problem for a hyperbolic equation with non-Lipschitz coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 1 (2002), 327-358. | Numdam | MR 1991143 | Zbl 1098.35094

[5] F. Colombini - D. Del Santo -M. Reissig, On the optimal regularity of coefficients in hyperbolic Cauchy problems, Bull. Sci. Math. 127 (2003), 328-347. | MR 1988632 | Zbl 1037.35038

[6] F. Colombini - N. Lerner, Hyperbolic operators with non-Lipschitz coefficients, Duke Math. J. 77 (1995), 657-698. | MR 1324638 | Zbl 0840.35067

[7] F. Hirosawa, On the Cauchy problem for second order strictly hyperbolic equations with non-regular coefficients, Math. Nachr. 256 (2003), 29-47. | MR 1989376 | Zbl 1026.35063

[8] F. Hirosawa - M. Reissig, Well-posedness in Sobolev spaces for second order strictly hyperbolic equations with non-differentiable oscillating coefficients, Ann. Global Anal. Geom. 25 (2004), 99-119. | MR 2046768 | Zbl 1047.35079

[9] S. Mizohata, “Theory of the partial differential equations", Cambridge University Press, 1973. | MR 599580 | Zbl 0263.35001

[10] M. Reissig, Hyperbolic equations with non-Lipschitz coefficients, Rend. Sem. Mat. Univ. Politec. Torino 61 (2003), 135-182. | MR 2056996 | Zbl 1182.35155

[11] M. Reissig - K. Yagdjian, L p -L q estimates for the solutions of strictly hyperbolic equations of second order with increasing in time coefficients, Math. Nachr. 214 (2000), 71-104. | MR 1762053 | Zbl 1006.35057

[12] K. Yagdjian, “The Cauchy Problem for Hyperbolic Operators. Multiple Characteristics, Micro-Local Approach", Akademie-Verlag, Berlin, 1997. | MR 1469977 | Zbl 0887.35002

[13] T. Yamazaki, On the L 2 ( n ) well-posedness of some singular or degenerate partial differential equations of hyperbolic type, Comm. Partial Differential Equations 15 (1990), 1029-1078. | MR 1070237 | Zbl 0714.35053