Rigidity for the hyperbolic Monge-Ampère equation
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 3 (2004) no. 3, p. 609-623
Some properties of nonlinear partial differential equations are naturally associated with the geometry of sets in the space of matrices. In this paper we consider the model case when the compact set K is contained in the hyperboloid -1 , where -1 𝕄 sym 2×2 , the set of symmetric 2×2 matrices. The hyperboloid -1 is generated by two families of rank-one lines and related to the hyperbolic Monge-Ampère equation det 2 u=-1. For some compact subsets K -1 containing a rank-one connection, we show the rigidity property of K by imposing proper topology in the convergence of approximate solutions and affine boundary conditions.
Classification:  49J10,  74G65,  35L70
@article{ASNSP_2004_5_3_3_609_0,
     author = {Lin, Chun-Chi},
     title = {Rigidity for the hyperbolic Monge-Amp\`ere equation},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 3},
     number = {3},
     year = {2004},
     pages = {609-623},
     zbl = {1170.49304},
     mrnumber = {2099251},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2004_5_3_3_609_0}
}
Lin, Chun-Chi. Rigidity for the hyperbolic Monge-Ampère equation. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 3 (2004) no. 3, pp. 609-623. http://www.numdam.org/item/ASNSP_2004_5_3_3_609_0/

[1] R. Aumann - S. Hart, Bi-convexity and bi-martingales, Israel J. Math. 54 (1986), 159-180. | MR 852476 | Zbl 0607.52001

[2] J. M. Ball - R. D. James, Fine phase mixtures as minimizers of energy, Arch. Ration. Mech. Anal. 100 (1987), 13-52. | MR 906132 | Zbl 0629.49020

[3] E. Casadio-Tarabusi, An algebraic characterization of quasi-convex functions, Ricerche Mat. 42 (1993), 11-24. | MR 1283802 | Zbl 0883.26011

[4] N. Chaudhuri - S. Müller, Rank-one convexity implies quasiconvexity on certain hypersurfaces, Proc. Roy. Soc. Edinburgh Sect. A 133 (2003), 1263-1272. | MR 2027644 | Zbl 1054.49018

[5] M. Chlebík - B. Kirchheim, Rigidity for the four gradient problem, J. Reine Angew. Math. 551 (2002), 1-9. | MR 1932170 | Zbl 1019.49022

[6] M. Chipot - D. Kinderlehrer, Equilibrium configurations of crystals, Arch. Ration. Mech. Anal. 103 (1988), 237-277. | MR 955934 | Zbl 0673.73012

[7] G. Dolzmann, “Variational Methods for Crystalline Microstructure-Analysis and Computation", Springer Lecture Notes in Mathematics 1803, 2003. | MR 1954274 | Zbl 1016.74002

[8] L. C. Evans, “Partial differential equations", Graduate Studies in Mathematics, 19, American Mathematical Society, Providence, RI, 1998. | MR 1625845 | Zbl 0902.35002

[9] L. C. Evans - R. F. Gariepy, On the partial regularity of energy-minimizing, area-preserving maps, Calc. Var. Partial Differential Equations (4) 9 (1999), 357-372. | MR 1731471 | Zbl 0954.49024

[10] H. Federer, “Geometric Measure Theory", Springer-verlag, New York, 1969. | MR 257325 | Zbl 0176.00801

[11] G. Friesecke - R. D. James - S. Müller, A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity, Comm. Pure Appl. Math. 55 (2002), 1461-1506. | MR 1916989 | Zbl 1021.74024

[12] E. Heinz, Über die Lösungen der Minimalflä chengleichung, Nach. Akad. Wissensch. in Göttingen Math.-Phys. Kl. II (1952), 51-56. | MR 54182 | Zbl 0048.15401

[13] F. John, Bounds for deformations in terms of average strains, Inequalities, III (Proc. Third Sympos., Univ. California, Los Angeles, Calif., 1969; dedicated to the memory of Theodore S. Motzkin), pp. 129-144, Academic Press, New York, 1972. | MR 344392 | Zbl 0292.53003

[14] D. Kinderlehrer, Remarks about equilibrium configurations of crystals, in: “Material instabilities in continuum mechanics and related mathematical problems" J.M. Ball (eds.), Oxford University Press, 1988, pp. 217-242. | MR 970527 | Zbl 0850.73037

[15] B. Kirchheim, “Habilitation thesis", University of Leipzig, 2001.

[16] O. I. Mokhov - Y. Nutku, Bianchi transformation between the real hyperbolic Monge-Ampère equation and the Born-Infeld equation, Lett. Math. Phys. (2) 32 (1994), 121-123. | MR 1296381 | Zbl 0814.35075

[17] S. Müller, Variational models for microstructure and phase transitions, in: “Calculus of variations and geometric evolution problems" (Cetraro, 1996 eds.), pp. 85-210, Lecture Notes in Math., 1713, Springer, Berlin, 1999. | MR 1731640 | Zbl 0968.74050

[18] S. Müller, Rank-one convexity implies quasiconvexity on diagonal matrices, Internat. Math. Res. Notices (20) (1999), 1087-1095. | MR 1728018 | Zbl 1055.49506

[19] S. Müller - V. Šverák, Convex integration for Lipschitz mappings and counterexamples to regularity, Ann. of Math. (2-3) 157 (2003), 715-742. | MR 1983780 | Zbl 1083.35032

[20] V. Nesi - G.W. Milton, Polycrystalline configurations that maximize electrical resistivity, J. Mech. Phys. Solids (4) 39 (1991), 525-542. | MR 1106125 | Zbl 0734.73068

[21] V. Scheffer, “Regularity and irregularity of solutions to nonlinear second order elliptic systems of partial differential equations and inequalities", Dissertation, Princeton University, 1974. | MR 2624766

[22] R. Schoen - J. Wolfson, Minimizing volume among Lagrangian submanifolds, Differential equations: La Pietra 1996, Florence, pp. 181-199, Proc. Sympos. Pure Math., 65, Amer. Math. Soc., Providence, RI, 1999. | MR 1662755 | Zbl 1031.53112

[23] F. Schulz, “Regularity theory for quasilinear elliptic systems and Monge-Ampeère equations in two dimensions", Lecture Notes in Mathematics, 1445, Springer-Verlag, Berlin, 1990. | MR 1079936 | Zbl 0709.35038

[24] V. Šverák, “On regularity for the Monge-Ampère equations", preprint, Heriot-Watt University, 1991.

[25] L. Tartar, Some remarks on separately convex functions, in: “Microstructure and phase transitions", IMA Vol. Math. Appl. 54 (D. Kinderlehrer, R. D. James, M. Luskin and J.L. Ericksen, eds.), Springer, 1993, pp. 191-204. | MR 1320538 | Zbl 0823.26008