@article{ASNSP_1988_4_15_4_583_0, author = {Caffarelli, Luis A.}, title = {A {Harnack} inequality approach to the regularity of free boundaries. {Part} {III} : existence theory, compactness, and dependence on $X$}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {583--602}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 15}, number = {4}, year = {1988}, mrnumber = {1029856}, zbl = {0702.35249}, language = {en}, url = {http://www.numdam.org/item/ASNSP_1988_4_15_4_583_0/} }
TY - JOUR AU - Caffarelli, Luis A. TI - A Harnack inequality approach to the regularity of free boundaries. Part III : existence theory, compactness, and dependence on $X$ JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1988 SP - 583 EP - 602 VL - 15 IS - 4 PB - Scuola normale superiore UR - http://www.numdam.org/item/ASNSP_1988_4_15_4_583_0/ LA - en ID - ASNSP_1988_4_15_4_583_0 ER -
%0 Journal Article %A Caffarelli, Luis A. %T A Harnack inequality approach to the regularity of free boundaries. Part III : existence theory, compactness, and dependence on $X$ %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1988 %P 583-602 %V 15 %N 4 %I Scuola normale superiore %U http://www.numdam.org/item/ASNSP_1988_4_15_4_583_0/ %G en %F ASNSP_1988_4_15_4_583_0
Caffarelli, Luis A. A Harnack inequality approach to the regularity of free boundaries. Part III : existence theory, compactness, and dependence on $X$. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 4, Volume 15 (1988) no. 4, pp. 583-602. http://www.numdam.org/item/ASNSP_1988_4_15_4_583_0/
[A-C] Existence and Regularity for a minimal problem with a free boundary, J. Reine Angew. Math 325 (1981), 105-144. | MR | Zbl
- ,[A-C-F] Variational problems with two phases and their free boundaries, T.A.M.S. 282 No. 2 (1984), 431-461. | MR | Zbl
- - ,[C,I] A Harnack inequality approach to the regularity of free boundaries. Part I: Lipschitz free boundaries are C1,α, Revista Matematica Iberoamericana, to appear.
,[C,II] A Harnack inequality approach to the regularity of free boundaries. Part II: Flat free boundaries are Lipschitz, to appear.
,[L-S-W] Regular points for elliptic equations with discontinuous coefficients, Ann. Scuola Norm. Sup. di Pisa (3) 17 (1963), 43-77. | Numdam | MR | Zbl
- - ,[G] Minimal Surfaces and Functions of Bounded Variation, Monographs in Mathematics, 1984. | MR | Zbl
,[G-T]Elliptic P.D.E. of Second order, 2nd Ed., Springer, New York, 1983.
- ,