@article{ASNSP_1988_4_15_4_583_0, author = {Caffarelli, Luis}, title = {A Harnack inequality approach to the regularity of free boundaries. Part III : existence theory, compactness, and dependence on $X$}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 15}, number = {4}, year = {1988}, pages = {583-602}, zbl = {0702.35249}, mrnumber = {1029856}, language = {en}, url = {http://www.numdam.org/item/ASNSP_1988_4_15_4_583_0} }
Caffarelli, Luis A. A Harnack inequality approach to the regularity of free boundaries. Part III : existence theory, compactness, and dependence on $X$. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 15 (1988) no. 4, pp. 583-602. http://www.numdam.org/item/ASNSP_1988_4_15_4_583_0/
[A-C] Existence and Regularity for a minimal problem with a free boundary, J. Reine Angew. Math 325 (1981), 105-144. | MR 618549 | Zbl 0449.35105
- ,[A-C-F] Variational problems with two phases and their free boundaries, T.A.M.S. 282 No. 2 (1984), 431-461. | MR 732100 | Zbl 0844.35137
- - ,[C,I] A Harnack inequality approach to the regularity of free boundaries. Part I: Lipschitz free boundaries are C1,α, Revista Matematica Iberoamericana, to appear.
,[C,II] A Harnack inequality approach to the regularity of free boundaries. Part II: Flat free boundaries are Lipschitz, to appear.
,[L-S-W] Regular points for elliptic equations with discontinuous coefficients, Ann. Scuola Norm. Sup. di Pisa (3) 17 (1963), 43-77. | Numdam | MR 161019 | Zbl 0116.30302
- - ,[G] Minimal Surfaces and Functions of Bounded Variation, Monographs in Mathematics, 1984. | MR 638362 | Zbl 0545.49018
,[G-T]Elliptic P.D.E. of Second order, 2nd Ed., Springer, New York, 1983.
- ,