@article{ASNSP_1988_4_15_3_357_0, author = {Tarantello, Gabriella}, title = {Subharmonic solutions for hamiltonian systems via a $\mathbb {Z}\_p$ pseudoindex theory}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {357--409}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 15}, number = {3}, year = {1988}, zbl = {0755.34035}, mrnumber = {1015800}, language = {en}, url = {http://www.numdam.org/item/ASNSP_1988_4_15_3_357_0/} }
Tarantello, Gabriella. Subharmonic solutions for hamiltonian systems via a $\mathbb {Z}_p$ pseudoindex theory. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 15 (1988) no. 3, pp. 357-409. http://www.numdam.org/item/ASNSP_1988_4_15_3_357_0/
[1] A geometrical index for the group S1 and some applications to the study of periodic solutions of ordinary differential equations, Comm. Pure Appl. Math. 34 (1981), pp. 393-432. | MR 615624 | Zbl 0447.34040
:[2] On the critical point theory for indefinite functionals in the presence of symmetries, Trans. Am. Math. Soc. 274 (1982), pp. 533-572. | MR 675067 | Zbl 0504.58014
:[3] Subharmonic solutions of prescribed minimal period for nonautonomous differential equations, preprint. | MR 902625
- :[4] Existence of multiple periodic orbits on star-shaped Hamiltonian surfaces, Comm. Pure Appl. Math. 38 (1985), pp. 253-289. | MR 784474 | Zbl 0569.58027
- - - :[5] On the periodic motion near a given periodic motion of a dynamical system, Ann. Mat. Pure Appl. 12 (1933), pp. 117-133. | JFM 59.0733.05 | Zbl 0007.37104
- :[6] Nonlinear oscillations and boundary value problems for Hamiltonian systems, Archive Rat. Mech. Anal. 78 (1982), pp. 315-333. | MR 653545 | Zbl 0514.34032
- :[7] Subharmonics for convex nonautonomous Hamiltonian systems, Comm. Pure Appl. Math. 40 (1987), pp. 1-36. | MR 865356 | Zbl 0601.58035
- :[8] Periodic solutions with prescribed minimal period for convex autonomous Hamiltonian systems, Inventions Math. 81 (1985), pp. 155-188. | MR 796195 | Zbl 0594.58035
- :[9] Borsuk-Ulam theorem for arbitrary S1 actions and applications, M.R.C. Tech. Summary report 2301 Madison, WI 53706.
- - :[10] Solutions of minimal period for a class of nonconvex Hamiltonian systems and application to the fixed Energy problem, Nonlinear Analysis T.M.A. Vol. 10 n. 34 (1986), pp. 371-382. | MR 836672 | Zbl 0607.70018
- :[11] Periodic solutions of convex autonomous Hamiltonian systems with quadratic growth at the origin and superquadratic at infinity, preprint.
- :[12] A Z P Borsuk-Ulam theorem and Index theory with a multiplicity result, preprint.
:[13] Subharmonic solutions with prescribed minimal period for nonautonomous Hamiltonian systems, J. Diff. Eq. in press. | Zbl 0645.34038
- :[14] Proof of a generalized fixed point theorem due to G.D. Birkhoff, Lecture notes in Mathematics, 597 Springer Verlag, New York 1977. | MR 494305
:[15] Comments on nonlinear problems, Conference Proceedings, Catania Sept. 1981. | MR 736798
:[16] On subharmonic solutions of Hamiltonian systems, Comm. Pure Appl. Math. 33 (1980), pp. 609-633. | MR 586414 | Zbl 0425.34024
:[17] Variational methods for nonlinear eigenvalue problem, in Eigenvalue of nonlinear problems, ed. G. Prodi, edizioni Cremonese Rome 1974. | MR 464299
:[18] The theory of groups and quantum mechanics, Dover, New York, 1950. | Zbl 0041.56804
:[19] A "Birkhoff-Lewis" type result for a class of Hamiltonian systems, preprint. | MR 915996
- :