The Weinstein conjecture in cotangent bundles and related results
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 4, Volume 15 (1988) no. 3, p. 411-445
@article{ASNSP_1988_4_15_3_411_0,
     author = {Hofer, Helmut and Viterbo, C.},
     title = {The Weinstein conjecture in cotangent bundles and related results},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     publisher = {Scuola normale superiore},
     volume = {Ser. 4, 15},
     number = {3},
     year = {1988},
     pages = {411-445},
     zbl = {0697.58044},
     mrnumber = {1015801},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_1988_4_15_3_411_0}
}
Hofer, H.; Viterbo, C. The Weinstein conjecture in cotangent bundles and related results. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 4, Volume 15 (1988) no. 3, pp. 411-445. http://www.numdam.org/item/ASNSP_1988_4_15_3_411_0/

[1] R. Abraham - J. Marsden, Foundation of Mechanics, Benjamin/Cummings 2nd ed., 1978. | Zbl 0393.70001

[2] J.C. Alexander - M. Reeken, On the topological structure of the set of generalized solutions of the catenary problem, Proc. Roy. Soc. Edin. (to appear) | MR 768354 | Zbl 0568.73063

[3] H. Amann - E. Zehnder, Periodic solutions of asymptotically linear Hamiltonian equations, Manuscripta Math. 32 (1980), pp. 149-189. | MR 592715 | Zbl 0443.70019

[4] V. Benci, On critical point theory for indefinite functionals in the presence of symmetries, TAMS 274 (1982), pp. 533-572. | MR 675067 | Zbl 0504.58014

[5] V. Benci - P. Rabinowitz, Critical point theorems for indefinite functionals, Inv. Math., 52 (1982), pp. 241-273. | MR 537061 | Zbl 0465.49006

[6] F. Clarke, Periodic Solutions of Hamiltonian inclusions, J. Diff. Eq. 40 (1981), pp. 1-6. | MR 614215 | Zbl 0461.34030

[7] A. Dold, The fixed point transfer of fibre preserving maps, Math. Z. 148 (1976), pp. 215-244. | MR 433440 | Zbl 0329.55007

[8] H. Elliasson, Geometry of manifold of maps, J. Diff. Geometry 1 (1967), pp. 165-194.

[9] H. Gluck - W. Ziller, Existence of periodic motions for conservative systems, Seminar on minimal submanifolds, Princeton University Press, 1982. | MR 795229 | Zbl 0546.58040

[10] H. Hofer, Critical point theory for Hamiltonian systems on cotangent bundles (in preparation).

[11] H. Hofer, Lagrangian embeddings and critical point theory, Ann. Inst. Henri Poincare, Analyse nonlineaire Vol. 2 No. 6, 1985, pp. 407-462. | Numdam | MR 831040 | Zbl 0591.58009

[12] H. Hofer - E. Zehnder, Periodic solutions on hypersurfaces and a result by C. Viterbo, Inv. Math. 90 (1987), pp. 1-9. | MR 906578 | Zbl 0631.58022

[13] W. Klingenberg, Riemannian Geometry, de Gruyter studies in Mathematics 1, Walter de Gruyter, Berlin, New York, 1982. | MR 666697 | Zbl 0495.53036

[14] W. Klingenberg, Lectures on closed geodesics, Grundlehren der Math. Wiss. 230 (1978), Springer Berlin-Heidelberg- New York. | MR 478069 | Zbl 0397.58018

[15] S. Lang, Differentiable manifolds, Reading, Mass: Addison-Wesley 1972. | Zbl 0239.58001

[16] W. Massey, Homology and Cohomology theory, Marcel Dekker, New York-Basel. | MR 488016 | Zbl 0377.55004

[17] R. Palais, Foundations of global nonlinear analysis, W.A. Benjamin Inc., New York, 1968. | MR 248880 | Zbl 0164.11102

[18] P. Rabinowitz, Periodic solutions of Hamiltonian systems, Comm. Pure and Appl. Math. 31 (1978), pp. 157-184. | MR 467823 | Zbl 0358.70014

[19] P. Rabinowitz, Periodic solutions of a Hamiltonian system on a prescribed energysurface, JDE 33 (1979), pp. 336-352. | MR 543703 | Zbl 0424.34043

[20] P. Rabinowitz, On a theorem of Hofer and Zehnder, in "Periodic solutions of Hamiltonian Systems and Related Topics", Ed. P. Rabinowitz, A. Ambrosetti, I. Ekeland and E. Zehnder, Nato ASI Series Vol. 209, pp. 245-254. | MR 920626 | Zbl 0635.58014

[21] H. Seifert, Periodische Bewegungen mechanischer Systeme, Math. Z. 51 (1948), pp. 197-216. | MR 25693 | Zbl 0030.22103

[22] D. Sullivan, Differential forms and the topology of manifolds, Manifolds Tokyo 1973, ed. A. Hattori, Tokyo, University of Tokyo Press, 1975. | MR 370611 | Zbl 0319.58005

[23] M. Vigue-Poirrier - D. Sullivan, The Homology of the closed geodesic problem, J. Diff. Geometry 11 (1976), pp. 633-644. | MR 455028 | Zbl 0361.53058

[24] E. Spanier, Algebraic Topology, McGraw Hill. | MR 210112 | Zbl 0145.43303

[25] C. Viterbo, A proof of the Weinstein Conjecture in R 2n, Analyse nonlineaire 4 (1987), pp. 337-356. | Numdam | MR 917741 | Zbl 0631.58013

[26] C. Viterbo, Une théorie de Morse pour les systemes hamiltoniens étoilés, in preparation.

[27] A. Weinstein, Periodic orbits for convex Hamiltonian systems, Ann. of Math. 108 (1978), pp. 507-518. | MR 512430 | Zbl 0403.58001

[28] A. Weinstein, On the hypotheses of Rabinowitz' periodic orbit theorems, J. Diff. Eq. 33 (1979), pp. 353-358. | MR 543704 | Zbl 0388.58020

[29] R. Bott, Morse theory old and new, BAMS Vol. 7 No. 2 (1982), pp. 331-358. | MR 663786 | Zbl 0505.58001

[30] Adams, Sobolevspaces, Academic Press, New York, 1975. | Zbl 0314.46030