Types of associativity inherited by a ring from a special ideal
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 3, Volume 26 (1972) no. 3, p. 613-623
@article{ASNSP_1972_3_26_3_613_0,
     author = {Outcalt, D. L. and Yaqub, Adil},
     title = {Types of associativity inherited by a ring from a special ideal},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     publisher = {Scuola normale superiore},
     volume = {Ser. 3, 26},
     number = {3},
     year = {1972},
     pages = {613-623},
     zbl = {0246.17001},
     mrnumber = {374205},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_1972_3_26_3_613_0}
}
Outcalt, D. L.; Yaqub, Adil. Types of associativity inherited by a ring from a special ideal. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 3, Volume 26 (1972) no. 3, pp. 613-623. http://www.numdam.org/item/ASNSP_1972_3_26_3_613_0/

[1] A.A. Albert, On nonassociative division algebras, Trans. Amer. Math. Soc. 72 (1952), 296-309. | MR 47027 | Zbl 0046.03601

[2] R. Block, Noncommutative Jordan algebras with commutators satisfying an alternativity condition, Proc. Nat. Acad. Sci. USA. | Zbl 0208.04002

[3] E.C. Johnsen, D.L. Outcalt, and Adil Yaqub, A generalization of a Theorem of Albert on finite division rings, J. Algebra 14 (1970), 106-111. | MR 252456 | Zbl 0198.35502

[4] E. Kleinfeld, M. Humm Kleinfeld, and F. Kosier, A generalization of commutative and alternative, rings, Canad. J. Math. 21 (1969), 348362. | Zbl 0198.35503