@article{ASENS_1987_4_20_2_201_0,
author = {Hsiang, Wu-yi and Tomter, Per},
title = {On minimal immersions of $S^{n-1}$ into $S^n(1),\;n \ge 4$},
journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
pages = {201--214},
year = {1987},
publisher = {Elsevier},
volume = {Ser. 4, 20},
number = {2},
doi = {10.24033/asens.1528},
mrnumber = {88m:53111},
zbl = {0627.53049},
language = {en},
url = {https://www.numdam.org/articles/10.24033/asens.1528/}
}
TY - JOUR
AU - Hsiang, Wu-yi
AU - Tomter, Per
TI - On minimal immersions of $S^{n-1}$ into $S^n(1),\;n \ge 4$
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1987
SP - 201
EP - 214
VL - 20
IS - 2
PB - Elsevier
UR - https://www.numdam.org/articles/10.24033/asens.1528/
DO - 10.24033/asens.1528
LA - en
ID - ASENS_1987_4_20_2_201_0
ER -
%0 Journal Article
%A Hsiang, Wu-yi
%A Tomter, Per
%T On minimal immersions of $S^{n-1}$ into $S^n(1),\;n \ge 4$
%J Annales scientifiques de l'École Normale Supérieure
%D 1987
%P 201-214
%V 20
%N 2
%I Elsevier
%U https://www.numdam.org/articles/10.24033/asens.1528/
%R 10.24033/asens.1528
%G en
%F ASENS_1987_4_20_2_201_0
Hsiang, Wu-yi; Tomter, Per. On minimal immersions of $S^{n-1}$ into $S^n(1),\;n \ge 4$. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 20 (1987) no. 2, pp. 201-214. doi: 10.24033/asens.1528
[1] , Isoparametric Hypersurfaces with Four or Six Distinct Curvatures (Math. Ann., Vol. 264, 1983, pp. 283-302). | Zbl | MR
[2] , Some Interior Regularity Theorems for Minimal Surfaces and an Extension of Bernstein's Theorem (Ann. of Math., (2), 84, 1966, pp. 277-292). | Zbl | MR
[3] , Minimal Immersions of Surfaces in Euclidean Spheres (J. Diff. Geom., Vol. 1, 1967, pp. 111-125). | Zbl | MR
[4] , Familles de surfaces isoparamétriques dans les espaces à courbure constante (Ann. Math., Vol. 17, 1938, pp. 177-191). | Zbl | JFM
[5] , Sur les familles remarquables d'hypersurfaces isoparamétriques dans les espaces sphériques (Math. Z., Vol. 45, 1939, pp. 335-367). | Zbl | MR | JFM
[6] , Sur quelques familles remarquables d'hypersurfaces (C. R. Congres. Math. Liège, 1939, pp. 30-41). | Zbl | JFM
[7] , Differential Geometry, its Past and Future (Actes, Congr. Intern. Math., T. 1, 1970, pp. 41-53). | Zbl | MR
[8] , On Surfaces of Constant Mean Curvature in a Three-Dimensional Space of Constant Curvature.
[9] , and , Cliffordalgebra und neue isoparametrische Hyperflöchen (Math. Z., Vol. 177, 1981, pp. 479-502). | Zbl
[10] and , On the Existence of Codimension One Minimal Spheres in Compact Symmetric Spaces of Rank 2, II (J. Diff. Geom., Vol. 17, 1982, pp. 582-594). | Zbl | MR
[11] , Minimal Cones and the Spherical Bernstein Problem, I (Annals of Math., Vol. 118, 1983, pp. 61-73 ; II (Invent. Math., Vol. 74, 1983, pp. 351-369). | Zbl
[12] and , Minimal Submanifolds of Low Cohomogeniety (J. Diff. Geom., Vol. 5, 1971, pp. 1-38). | Zbl
[13] and , Minimal Cones and the Spherical Bernstein Problem, III [Invent. Math. (to appear)]. | Zbl
[14] , Isoparametrische Hyperflöchen in Sphören, I, (Math. Ann., Vol. 251, 1980, pp. 57-71) ; II (Math. Ann., Vol. 256, 1981, pp. 215-232).
[15] , Elie Cartan's Work on Isoparametric Families of Hypersurfaces (Proc. Sym. Pure Math., Vol. 27, 1975, pp. 191-200). | Zbl | MR
[16] and , On Some Types of Isoparametric Hypersurfaces in Spheres, I (Tohoku Math. J., Vol. 27, 1975, pp. 515-559 ; II (Tohoku Math. J., Vol. 28, 1976, pp. 7-55). | Zbl
[17] , Isoparametric Submanifolds and their Coxeter Groups, preprint, Northeastern University, Boston, Mass.
[18] , The Spherical Bernstein Problem in Even Dimensions (Bull. Amer. Math. Soc., Vol. 11, No. 1, 1984, pp. 183-185). | Zbl | MR
[19] , The Spherical Bernstein Problem in Even Dimensions and Related Problems [Acta Math. (to appear)]. | Zbl
[20] and , Non-Rotational Minimal Spheres and Minimal Cones (Comment. Math. Helv., Vol. 60, 1985, pp. 247-269). | Zbl | MR
[21] , Existence and Uniqueness for a Class of Cauchy-problems with Characteristic Initial Manifolds, Preprint Series, No. 10, December 1985, Institute of Mathematics, University of Oslo.
Cité par Sources :





