@article{ASENS_1987_4_20_2_201_0, author = {Hsiang, Wu-yi and Tomter, Per}, title = {On minimal immersions of $S^{n-1}$ into $S^n(1),\;n \ge 4$}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {201--214}, publisher = {Elsevier}, volume = {Ser. 4, 20}, number = {2}, year = {1987}, doi = {10.24033/asens.1528}, mrnumber = {88m:53111}, zbl = {0627.53049}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.1528/} }
TY - JOUR AU - Hsiang, Wu-yi AU - Tomter, Per TI - On minimal immersions of $S^{n-1}$ into $S^n(1),\;n \ge 4$ JO - Annales scientifiques de l'École Normale Supérieure PY - 1987 SP - 201 EP - 214 VL - 20 IS - 2 PB - Elsevier UR - http://www.numdam.org/articles/10.24033/asens.1528/ DO - 10.24033/asens.1528 LA - en ID - ASENS_1987_4_20_2_201_0 ER -
%0 Journal Article %A Hsiang, Wu-yi %A Tomter, Per %T On minimal immersions of $S^{n-1}$ into $S^n(1),\;n \ge 4$ %J Annales scientifiques de l'École Normale Supérieure %D 1987 %P 201-214 %V 20 %N 2 %I Elsevier %U http://www.numdam.org/articles/10.24033/asens.1528/ %R 10.24033/asens.1528 %G en %F ASENS_1987_4_20_2_201_0
Hsiang, Wu-yi; Tomter, Per. On minimal immersions of $S^{n-1}$ into $S^n(1),\;n \ge 4$. Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 20 (1987) no. 2, pp. 201-214. doi : 10.24033/asens.1528. http://www.numdam.org/articles/10.24033/asens.1528/
[1] Isoparametric Hypersurfaces with Four or Six Distinct Curvatures (Math. Ann., Vol. 264, 1983, pp. 283-302). | MR | Zbl
,[2] Some Interior Regularity Theorems for Minimal Surfaces and an Extension of Bernstein's Theorem (Ann. of Math., (2), 84, 1966, pp. 277-292). | MR | Zbl
,[3] Minimal Immersions of Surfaces in Euclidean Spheres (J. Diff. Geom., Vol. 1, 1967, pp. 111-125). | MR | Zbl
,[4] Familles de surfaces isoparamétriques dans les espaces à courbure constante (Ann. Math., Vol. 17, 1938, pp. 177-191). | JFM | Zbl
,[5] Sur les familles remarquables d'hypersurfaces isoparamétriques dans les espaces sphériques (Math. Z., Vol. 45, 1939, pp. 335-367). | JFM | MR | Zbl
,[6] Sur quelques familles remarquables d'hypersurfaces (C. R. Congres. Math. Liège, 1939, pp. 30-41). | JFM | Zbl
,[7] Differential Geometry, its Past and Future (Actes, Congr. Intern. Math., T. 1, 1970, pp. 41-53). | MR | Zbl
,[8] On Surfaces of Constant Mean Curvature in a Three-Dimensional Space of Constant Curvature.
,[9] Cliffordalgebra und neue isoparametrische Hyperflöchen (Math. Z., Vol. 177, 1981, pp. 479-502). | Zbl
, and ,[10] On the Existence of Codimension One Minimal Spheres in Compact Symmetric Spaces of Rank 2, II (J. Diff. Geom., Vol. 17, 1982, pp. 582-594). | MR | Zbl
and ,[11] Minimal Cones and the Spherical Bernstein Problem, I (Annals of Math., Vol. 118, 1983, pp. 61-73 ; II (Invent. Math., Vol. 74, 1983, pp. 351-369). | Zbl
,[12] Minimal Submanifolds of Low Cohomogeniety (J. Diff. Geom., Vol. 5, 1971, pp. 1-38). | Zbl
and ,[13] Minimal Cones and the Spherical Bernstein Problem, III [Invent. Math. (to appear)]. | Zbl
and ,[14] Isoparametrische Hyperflöchen in Sphören, I, (Math. Ann., Vol. 251, 1980, pp. 57-71) ; II (Math. Ann., Vol. 256, 1981, pp. 215-232).
,[15] Elie Cartan's Work on Isoparametric Families of Hypersurfaces (Proc. Sym. Pure Math., Vol. 27, 1975, pp. 191-200). | MR | Zbl
,[16] On Some Types of Isoparametric Hypersurfaces in Spheres, I (Tohoku Math. J., Vol. 27, 1975, pp. 515-559 ; II (Tohoku Math. J., Vol. 28, 1976, pp. 7-55). | Zbl
and ,[17] Isoparametric Submanifolds and their Coxeter Groups, preprint, Northeastern University, Boston, Mass.
,[18] The Spherical Bernstein Problem in Even Dimensions (Bull. Amer. Math. Soc., Vol. 11, No. 1, 1984, pp. 183-185). | MR | Zbl
,[19] The Spherical Bernstein Problem in Even Dimensions and Related Problems [Acta Math. (to appear)]. | Zbl
,[20] Non-Rotational Minimal Spheres and Minimal Cones (Comment. Math. Helv., Vol. 60, 1985, pp. 247-269). | MR | Zbl
and ,[21] Existence and Uniqueness for a Class of Cauchy-problems with Characteristic Initial Manifolds, Preprint Series, No. 10, December 1985, Institute of Mathematics, University of Oslo.
,Cited by Sources: