@article{AIHPC_2006__23_5_641_0, author = {Horita, Vanderlei and Tahzibi, Ali}, title = {Partial hyperbolicity for symplectic diffeomorphisms}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {641--661}, publisher = {Elsevier}, volume = {23}, number = {5}, year = {2006}, doi = {10.1016/j.anihpc.2005.06.002}, mrnumber = {2259610}, zbl = {05072655}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2005.06.002/} }
TY - JOUR AU - Horita, Vanderlei AU - Tahzibi, Ali TI - Partial hyperbolicity for symplectic diffeomorphisms JO - Annales de l'I.H.P. Analyse non linéaire PY - 2006 SP - 641 EP - 661 VL - 23 IS - 5 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2005.06.002/ DO - 10.1016/j.anihpc.2005.06.002 LA - en ID - AIHPC_2006__23_5_641_0 ER -
%0 Journal Article %A Horita, Vanderlei %A Tahzibi, Ali %T Partial hyperbolicity for symplectic diffeomorphisms %J Annales de l'I.H.P. Analyse non linéaire %D 2006 %P 641-661 %V 23 %N 5 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2005.06.002/ %R 10.1016/j.anihpc.2005.06.002 %G en %F AIHPC_2006__23_5_641_0
Horita, Vanderlei; Tahzibi, Ali. Partial hyperbolicity for symplectic diffeomorphisms. Annales de l'I.H.P. Analyse non linéaire, Volume 23 (2006) no. 5, pp. 641-661. doi : 10.1016/j.anihpc.2005.06.002. http://www.numdam.org/articles/10.1016/j.anihpc.2005.06.002/
[1] A. Arbieto, C. Matheus, A pasting lemma I: the case of vector fields, Preprint, IMPA, 2003.
[2] The generic symplectic -diffeomorphisms of four-dimensional symplectic manifolds are hyperbolic, partially hyperbolic or have a completely elliptic periodic point, Ergodic Theory Dynam. Systems 22 (6) (2002) 1621-1639. | MR | Zbl
,[3] J. Bochi, M. Viana, Lyapunov exponents: How frequently are dynamical systems hyperbolic?, Preprint IMPA, 2003. | MR
[4] Nonhyperbolic transitive diffeomorphisms, Ann. of Math. 143 (1996) 357-396. | MR | Zbl
, ,[5] A -generic dichotomy for diffeomorphisms: weak forms of hyperbolicity or infinitely many sinks or sources, Ann. of Math. 157 (2) (2003) 355-418. | MR | Zbl
, , ,[6] SRB measures for partially hyperbolic systems whose central direction is mostly contracting, Israel J. Math. 115 (2000) 157-193. | MR | Zbl
, ,[7] Recent results about stable ergodicity, Proc. Sympos. Amer. Math. Soc. 69 (2001) 327-366. | MR | Zbl
, , , ,[8] On a partial differential equation involving the Jacobian determinant, Ann. Inst. H. Poincaré Anal. Non Linéaire 7 (1) (1990) 1-26. | Numdam | MR | Zbl
, ,[9] Partial hyperbolicity and robust transitivity, Acta Math. 183 (1999) 1-43. | MR | Zbl
, , ,[10] Contributions to the stability conjecture, Topology 17 (1978) 383-396. | MR | Zbl
,[11] An ergodic closing lemma, Ann. of Math. 116 (1982) 503-540. | MR | Zbl
,[12] Oseledec's theorem from the generic viewpoint, in: Proceedings of the International Congress of Mathematicians, vols. 1, 2, Warsaw, 1983, PWN, Warsaw, 1984, pp. 1269-1276. | MR | Zbl
,[13] Quasi-elliptic periodic points in conservative dynamical systems, Amer. J. Math. 99 (5) (1976) 1061-1087. | MR | Zbl
,[14] Topologically transitive diffeomorphisms on , in: Lecture Notes in Math., vol. 206, Springer-Verlag, 1971, pp. 39.
,[15] Stably ergodic systems which are not partially hyperbolic, Israel J. Math. 24 (204) (2004) 315-342. | MR | Zbl
,[16] Flots robustament transitif sur des variété compactes, C. R. Math. Acad. Sci. Paris 337 (12) (2003) 791-796. | MR | Zbl
,[17] Homoclinic points in symplectic and volume-preserving diffeomorphisms, Comm. Math. Phys. 177 (2) (1996) 435-449. | MR | Zbl
,[18] A note on smoothing symplectic and volume preserving diffeomorphisms, in: Lecture Notes in Math., vol. 597, Springer-Verlag, 1977, pp. 828-854. | MR | Zbl
,Cited by Sources: