Partial hyperbolicity for symplectic diffeomorphisms
Annales de l'I.H.P. Analyse non linéaire, Volume 23 (2006) no. 5, pp. 641-661.
@article{AIHPC_2006__23_5_641_0,
     author = {Horita, Vanderlei and Tahzibi, Ali},
     title = {Partial hyperbolicity for symplectic diffeomorphisms},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {641--661},
     publisher = {Elsevier},
     volume = {23},
     number = {5},
     year = {2006},
     doi = {10.1016/j.anihpc.2005.06.002},
     zbl = {05072655},
     mrnumber = {2259610},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2005.06.002/}
}
TY  - JOUR
AU  - Horita, Vanderlei
AU  - Tahzibi, Ali
TI  - Partial hyperbolicity for symplectic diffeomorphisms
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2006
DA  - 2006///
SP  - 641
EP  - 661
VL  - 23
IS  - 5
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2005.06.002/
UR  - https://zbmath.org/?q=an%3A05072655
UR  - https://www.ams.org/mathscinet-getitem?mr=2259610
UR  - https://doi.org/10.1016/j.anihpc.2005.06.002
DO  - 10.1016/j.anihpc.2005.06.002
LA  - en
ID  - AIHPC_2006__23_5_641_0
ER  - 
%0 Journal Article
%A Horita, Vanderlei
%A Tahzibi, Ali
%T Partial hyperbolicity for symplectic diffeomorphisms
%J Annales de l'I.H.P. Analyse non linéaire
%D 2006
%P 641-661
%V 23
%N 5
%I Elsevier
%U https://doi.org/10.1016/j.anihpc.2005.06.002
%R 10.1016/j.anihpc.2005.06.002
%G en
%F AIHPC_2006__23_5_641_0
Horita, Vanderlei; Tahzibi, Ali. Partial hyperbolicity for symplectic diffeomorphisms. Annales de l'I.H.P. Analyse non linéaire, Volume 23 (2006) no. 5, pp. 641-661. doi : 10.1016/j.anihpc.2005.06.002. http://www.numdam.org/articles/10.1016/j.anihpc.2005.06.002/

[1] A. Arbieto, C. Matheus, A pasting lemma I: the case of vector fields, Preprint, IMPA, 2003.

[2] Arnaud M.-C., The generic symplectic C 1 -diffeomorphisms of four-dimensional symplectic manifolds are hyperbolic, partially hyperbolic or have a completely elliptic periodic point, Ergodic Theory Dynam. Systems 22 (6) (2002) 1621-1639. | MR | Zbl

[3] J. Bochi, M. Viana, Lyapunov exponents: How frequently are dynamical systems hyperbolic?, Preprint IMPA, 2003. | MR

[4] Bonatti C., Díaz L.J., Nonhyperbolic transitive diffeomorphisms, Ann. of Math. 143 (1996) 357-396. | MR | Zbl

[5] Bonatti C., Díaz L.J., Pujals E., A C 1 -generic dichotomy for diffeomorphisms: weak forms of hyperbolicity or infinitely many sinks or sources, Ann. of Math. 157 (2) (2003) 355-418. | MR | Zbl

[6] Bonatti C., Viana M., SRB measures for partially hyperbolic systems whose central direction is mostly contracting, Israel J. Math. 115 (2000) 157-193. | MR | Zbl

[7] Burns K., Pugh C., Shub M., Wilkinson A., Recent results about stable ergodicity, Proc. Sympos. Amer. Math. Soc. 69 (2001) 327-366. | MR | Zbl

[8] Dacorogna B., Moser J., On a partial differential equation involving the Jacobian determinant, Ann. Inst. H. Poincaré Anal. Non Linéaire 7 (1) (1990) 1-26. | Numdam | MR | Zbl

[9] Díaz L.J., Pujals E., Ures R., Partial hyperbolicity and robust transitivity, Acta Math. 183 (1999) 1-43. | MR | Zbl

[10] Mañé R., Contributions to the stability conjecture, Topology 17 (1978) 383-396. | MR | Zbl

[11] Mañé R., An ergodic closing lemma, Ann. of Math. 116 (1982) 503-540. | MR | Zbl

[12] Mañé R., Oseledec's theorem from the generic viewpoint, in: Proceedings of the International Congress of Mathematicians, vols. 1, 2, Warsaw, 1983, PWN, Warsaw, 1984, pp. 1269-1276. | MR | Zbl

[13] Newhouse S., Quasi-elliptic periodic points in conservative dynamical systems, Amer. J. Math. 99 (5) (1976) 1061-1087. | MR | Zbl

[14] Shub M., Topologically transitive diffeomorphisms on T 4 , in: Lecture Notes in Math., vol. 206, Springer-Verlag, 1971, pp. 39.

[15] Tahzibi A., Stably ergodic systems which are not partially hyperbolic, Israel J. Math. 24 (204) (2004) 315-342. | MR | Zbl

[16] Vivier T., Flots robustament transitif sur des variété compactes, C. R. Math. Acad. Sci. Paris 337 (12) (2003) 791-796. | MR | Zbl

[17] Xia Z., Homoclinic points in symplectic and volume-preserving diffeomorphisms, Comm. Math. Phys. 177 (2) (1996) 435-449. | MR | Zbl

[18] Zehnder E., A note on smoothing symplectic and volume preserving diffeomorphisms, in: Lecture Notes in Math., vol. 597, Springer-Verlag, 1977, pp. 828-854. | MR | Zbl

Cited by Sources: