@article{AIHPC_1993__10_5_481_0, author = {Schirmer, Pedro Paulo}, title = {Decay estimates for spherically symmetric {Yang-Mills} fields in {Minkowski} space-time}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {481--522}, publisher = {Gauthier-Villars}, volume = {10}, number = {5}, year = {1993}, mrnumber = {1249104}, zbl = {0802.53040}, language = {en}, url = {http://www.numdam.org/item/AIHPC_1993__10_5_481_0/} }
TY - JOUR AU - Schirmer, Pedro Paulo TI - Decay estimates for spherically symmetric Yang-Mills fields in Minkowski space-time JO - Annales de l'I.H.P. Analyse non linéaire PY - 1993 SP - 481 EP - 522 VL - 10 IS - 5 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPC_1993__10_5_481_0/ LA - en ID - AIHPC_1993__10_5_481_0 ER -
%0 Journal Article %A Schirmer, Pedro Paulo %T Decay estimates for spherically symmetric Yang-Mills fields in Minkowski space-time %J Annales de l'I.H.P. Analyse non linéaire %D 1993 %P 481-522 %V 10 %N 5 %I Gauthier-Villars %U http://www.numdam.org/item/AIHPC_1993__10_5_481_0/ %G en %F AIHPC_1993__10_5_481_0
Schirmer, Pedro Paulo. Decay estimates for spherically symmetric Yang-Mills fields in Minkowski space-time. Annales de l'I.H.P. Analyse non linéaire, Volume 10 (1993) no. 5, pp. 481-522. http://www.numdam.org/item/AIHPC_1993__10_5_481_0/
[1] Private Communication, Proc. Hungarian General Relativity Workshop, Tihany, Sept. 1989, Ed. Zoltán Perjes (to appear). | MR
,[2] Solutions globales des équations de champs de Yang-Mills, C. R. Acad. Sci. Paris, T. 293, Series A, 1981, p. 39. | MR | Zbl
,[3] Asymptotic Properties of Linear Field Equations in Minkowski Space, Comm. Pure and Appl. Math., Vol. 43, 1990, pp. 137-199. | MR | Zbl
and ,[4] There are No Classical Glueballs, Comm. Math. Phys., Vol. 55, 1977, p. 113. | MR | Zbl
,[5] Absence of Static Solutions in Source-Free Yang-Mills Theory, Phys. Letters, Vol. 64B, 1976, p. 463.
,[6] The Global Existence of Yang-Mill-Higgs Fields in 4- dimensional Minkowski Space, Comm. Math. Phys., Vol. 83, 1982, p. 171. | MR | Zbl
and ,[7] Space-Time Symmetries in Gauge Theories, Comm. Math. Phys., Vol. 72, 1980, p. 15. | MR
and ,[8] On The Spherically Symmetric Gauge Fields, Comm. Math. Phys., Vol. 79, 1981, p. 75. | MR
and ,[9] Decay of Classical Yang-Mills Fields, Commun. Math. Phys., Vol. 65, 1979, p. 1. | MR | Zbl
and ,[10] Some Global Solutions of the Yang-Mills Equations in Minkowski Space, Comm. Math. Phys., Vol. 81, 1981, pp. 171-187. | MR | Zbl
and ,[11] The Scattering of Certain Yang-Mills Fields, Commun. Math. Phys., Vol. 89, 1983, pp. 465-482. | MR | Zbl
and ,[12] The Cauchy Problem for Coupled Yang-Mills and Scalar Fields in the Temporal Gauge, Commun. Math. Phys., Vol. 82, 1981, pp. 1-28. | MR | Zbl
and ,[13] Group Actions on Principal Bundles and Invariance Conditions for Gange Fields J. Math. Phys., Vol. 21, 1980, p. 2719. | MR | Zbl
, and ,[14] Gauge fields and Symmetries, Suppl. Acta Physica Austriaca, Schlamming lect. notes, Ed. P. Urban.
,[15] Vortices and Monopoles, Clifford Taubes, Birkhäuser Progress in Physics PPh2, Birkhäuser, 1980. | MR | Zbl
,[16] Uniform Decay Estimates and the Lorentz Invariance of the Classical Wave Equation, Comm. Pure Appl. Math., Vol. 37, 1985, p. 321. | MR | Zbl
,[17] The Null Condition and Global Existence to Non-linear Wave Equations, Lectures in Applied Mathematics, Vol. 23, 1986, Ed. B. Nicolaenko. | MR | Zbl
,[18] Remarks on the Global Sobolev Inequalities in Minkowski, Space, Comm. Pure and Appl. Math., Vol. 40, 1987, p. 111. | MR | Zbl
,[19] The Spherically Symmetric Einstein-Yang-Mills Equations, Honours Thesis, ANU, Canberra, Nov. 1987.
,[20] On Spherically Symmetric Fields in Gauge Theories, Nuclear Physics, Vol. B130, 1977, pp. 209-220. | MR
, and ,[21] On Symmetric Gauge Fields, Comm. Math. Phys., Vol. 56, 1977, p. 79. | MR | Zbl
,[22] Global Existence for Spherically Symmetric Yang-Mills Fields on 3 + 1 Space-Time Dimensions, Doctoral dissertation, New York University, 1990.
,[23] On Invariant Connections over a Principal Fibre Bundle, Nagoya Math. J., Vol. 13, 1958, pp. 1-19. | MR | Zbl
,