Contingent solutions to the center manifold equation
Annales de l'I.H.P. Analyse non linéaire, Volume 9 (1992) no. 1, pp. 13-28.
@article{AIHPC_1992__9_1_13_0,
     author = {Aubin, Jean-Pierre and Da Prato, Guiseppe},
     title = {Contingent solutions to the center manifold equation},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {13--28},
     publisher = {Gauthier-Villars},
     volume = {9},
     number = {1},
     year = {1992},
     mrnumber = {1151465},
     zbl = {0745.34039},
     language = {en},
     url = {http://www.numdam.org/item/AIHPC_1992__9_1_13_0/}
}
TY  - JOUR
AU  - Aubin, Jean-Pierre
AU  - Da Prato, Guiseppe
TI  - Contingent solutions to the center manifold equation
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 1992
SP  - 13
EP  - 28
VL  - 9
IS  - 1
PB  - Gauthier-Villars
UR  - http://www.numdam.org/item/AIHPC_1992__9_1_13_0/
LA  - en
ID  - AIHPC_1992__9_1_13_0
ER  - 
%0 Journal Article
%A Aubin, Jean-Pierre
%A Da Prato, Guiseppe
%T Contingent solutions to the center manifold equation
%J Annales de l'I.H.P. Analyse non linéaire
%D 1992
%P 13-28
%V 9
%N 1
%I Gauthier-Villars
%U http://www.numdam.org/item/AIHPC_1992__9_1_13_0/
%G en
%F AIHPC_1992__9_1_13_0
Aubin, Jean-Pierre; Da Prato, Guiseppe. Contingent solutions to the center manifold equation. Annales de l'I.H.P. Analyse non linéaire, Volume 9 (1992) no. 1, pp. 13-28. http://www.numdam.org/item/AIHPC_1992__9_1_13_0/

[1] J.-P. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag, 1984. | MR | Zbl

[2] J.-P. Aubin and G. Da Prato, Stochastic Viability and Invariance, Ann. Scuola Norm. di Pisa , Vol. 27, 1990, pp. 595-694. | Numdam | MR | Zbl

[3] J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser, Boston, Basel, 1990. | MR | Zbl

[4] J.-P. Aubin and H. Frankowska, Contingent partial Differential Equations Governing Feedback Controls, Preprint (to appear). | MR

[5] J.-P. Aubin, Viability Theory, Birkhäuser, Boston, Basel, 1991. | MR | Zbl

[6] C.I. Byrnes and A. Isidori, A Frequency Domain Philosophy for Nonlinear Systems, with applications to stabilization and adaptive control, 23rd I.E.E.E. Conf. Dec. Control, 1984, pp. 1569-1573 in Comutation and Control, K. BOWERS and J. LUND Eds., Birkhäuser, pp. 23-52.

[7] C.I. Byrnes and A. Isidori, Output Regulation of Non linear Systems, I.E.E.E. Trans. Automn. Control, Vol. 35, 1990, pp. 131-140. | MR | Zbl

[8] C.I. Byrnes and A. Isidori, Asymptotic Stabilization of Minimum Phase Nonlinear Systems, Preprint (to appear). | MR

[9] I. Capuzzo Dolcetta and J.L. Menaldi, Asymptotic Behavior of the First Order Obstacle Problem, J. Diff. Eq., Vol. 75, 1988, pp. 303-328. | MR | Zbl

[10] P. Cannarsa and G. Da Prato, Direct Solutions of a Second-Order Hamilton-Jacobi Equation in Hilbert Spaces, Preprint (to appear). | MR

[11] J. Carr, Applications of Centre Manifold Theory, Springer-Verlag, 1981. | MR | Zbl

[12] G. Da Prato and A. Lunardi, Stability, Instability and Center Manifold Theorem for Fully Nonlinear Autonomous Parabolic Equations in Banach Spaces, Arch. Rat. Mech. Anal., Vol. 101, 1988, pp. 115-141. | MR | Zbl

[13] L.C. Evans and P.E. Souganidis, Fully Nonlinear Second Order Elliptic Equations With Large Order Coefficient, Ann. Inst. Fourier, Vol. 31, 1981, pp. 175-191. | Numdam | MR | Zbl

[14] H. Frankowska, L'équation d'Hamilton-Jacobi contingente, C.R. Acad. Sci. Paris, T. 304, Series I, 1987, pp. 295-298. | MR | Zbl

[15] H. Frankowska, Optimal trajectories associated a solution of Hamilton-Jacobi Equations, I.E.E.E., 26th, CDC Conference, Los Angeles, December 9-11, 1987.

[16] H. Frankowska, Nonsmooth solutions of Hamilton-Jacobi-Bellman Equations, Proceedings of the International Conference Bellmann Continuum, Antibes, France, June 13- 14, 1988, Lecture Notes in Control and Information Sciences, Springer Verlag. | MR | Zbl

[17] O. Hijab, Discounted Control of Degenerate Diffusions in Rd, preprint (to appear).

[18] P.-L. Lions, Generalized solutions of Hamilton-Jacobi equations, Pitman, 1982. | MR | Zbl

[19] A. Lunardi, Existence in the small and in the large in Fully Nonlinear Parabolic Equations, in Differencia Equations and Applications, Ed. Aftabizadeh, Ohio University Press, 1988. | MR | Zbl