Rates of strong uniform consistency for multivariate kernel density estimators
Annales de l'I.H.P. Probabilités et statistiques, Volume 38 (2002) no. 6, pp. 907-921.
@article{AIHPB_2002__38_6_907_0,
     author = {Gin\'e, Evarist and Guillou, Armelle},
     title = {Rates of strong uniform consistency for multivariate kernel density estimators},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {907--921},
     publisher = {Elsevier},
     volume = {38},
     number = {6},
     year = {2002},
     mrnumber = {1955344},
     zbl = {1011.62034},
     language = {en},
     url = {http://www.numdam.org/item/AIHPB_2002__38_6_907_0/}
}
TY  - JOUR
AU  - Giné, Evarist
AU  - Guillou, Armelle
TI  - Rates of strong uniform consistency for multivariate kernel density estimators
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 2002
SP  - 907
EP  - 921
VL  - 38
IS  - 6
PB  - Elsevier
UR  - http://www.numdam.org/item/AIHPB_2002__38_6_907_0/
LA  - en
ID  - AIHPB_2002__38_6_907_0
ER  - 
%0 Journal Article
%A Giné, Evarist
%A Guillou, Armelle
%T Rates of strong uniform consistency for multivariate kernel density estimators
%J Annales de l'I.H.P. Probabilités et statistiques
%D 2002
%P 907-921
%V 38
%N 6
%I Elsevier
%U http://www.numdam.org/item/AIHPB_2002__38_6_907_0/
%G en
%F AIHPB_2002__38_6_907_0
Giné, Evarist; Guillou, Armelle. Rates of strong uniform consistency for multivariate kernel density estimators. Annales de l'I.H.P. Probabilités et statistiques, Volume 38 (2002) no. 6, pp. 907-921. http://www.numdam.org/item/AIHPB_2002__38_6_907_0/

[1] K. Alexander, Probability inequalities for empirical processes and a law of iterated logarithm, Ann. Probab. 12 (1984) 1041-1067. | MR | Zbl

[2] P. Deheuvels, Uniform limit laws for kernel density estimators on possibly unbounded intervals, in: Limnios N., Nikulin M. (Eds.), Recent Advances in Reliability Theory: Methodology, Practice and Inference, Birkhauser, Boston, 2000, pp. 477-492. | MR | Zbl

[3] V. De La Peña, E. Giné, Decoupling, from Dependence to Independence, Springer-Verlag, New York, 1999. | MR | Zbl

[4] R.M. Dudley, Uniform Central Limit Theorems, Cambridge University Press, Cambridge, UK, 1999. | MR | Zbl

[5] U. Einmahl, D. Mason, Some universal results on the behavior of increments of partial sums, Ann. Probab. 24 (1996) 1388-1407. | MR | Zbl

[6] U. Einmahl, D. Mason, An empirical process approach to the uniform consistency of kernel-type function estimators, J. Theoret. Probab. 13 (2000) 1-37. | MR | Zbl

[7] E. Giné, A. Guillou, On consistency of kernel density estimators for randomly censored data: rates holding uniformly over adaptive intervals, Ann. Inst. Henri Poincaré - PR 37 (2001) 503-522. | Numdam | Zbl

[8] E. Giné, V.I. Koltchinskii, J. Zinn, Weighted uniform consistency of kernel density estimators, Preprint, 2001.

[9] P. Massart, Rates of convergence in the central limit theorem for empirical processes, Ann. Inst. Henri Poincaré 22 (1986) 381-423. | Numdam | MR | Zbl

[10] S.J. Montgomery-Smith, Comparison of sums of independent identically distributed random vectors, Probab. Math. Statist. 14 (1993) 281-285. | MR | Zbl

[11] D. Nolan, D. Pollard, U-processes: rates of convergence, Ann. Statist. 15 (1987) 780-799. | MR | Zbl

[12] M. Rosenblatt, Remarks on some nonparametric estimates of a density function, Ann. Math. Statist. 27 (1956) 832-835. | MR | Zbl

[13] B.W. Silverman, Weak and strong uniform consistency of the kernel estimate of a density and its derivatives, Ann. Statist. 6 (1978) 177-189. | MR | Zbl

[14] W. Stute, The oscillation behavior of empirical processes: the multivariate case, Ann. Probab. 12 (1984) 361-379. | MR | Zbl

[15] M. Talagrand, Sharper bounds for Gaussian and empirical processes, Ann. Probab. 22 (1994) 28-76. | MR | Zbl

[16] M. Talagrand, New concentration inequalities in product spaces, Invent. Math. 126 (1996) 505-563. | MR | Zbl