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ABSTRACT. — Let f, denote the usual kernel density estimator in several dimensions. It is
shown that if{a,, } is a regular band sequendé,is a bounded square integrable kernel of several
variables, satisfying some additional mild conditio&’{) below), and if the data consist of
an i.i.d. sample from a distribution possessing a bounded defisitith respect to Lebesgue
measure oR?, then

. na¢
limsup " Suplfu(t) — Efa(t)] < C\/||f||oo/K2(x)dx a.s.
1n—>00 0Qay = teRrd

for some absolute constagt that depends only od. With some additional but still weak
conditions, it is proved that the above sequence of normalized suprema converges a.s. |

\/2a'||f||oo J K2(x) dx. Convergence of the moment generating functions is also proved. Neither
of these results requirgto be strictly positive. These results improve upon, and extend to several
dimensigns, results by Silverman [13] for univariate densities.
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RESUME. — Soit f,, I'estimateur a noyau d’une densité multivariée. Nous démontrons dans
cet article que s{a,} est une suite régulier& un noyau multivarié borné de carré intégrable,

E-mail addresses: gine@uconnvm.uconn.edu (E. Giné), guillou@ccr.jussieu.fr (A. Guillou).
1 Research supported in part by NSF Grant No. DMS-0070382.



908 E. GINE, A. GUILLOU / Ann. I. H. Poincaré — PR 38 (2002) 907-921

satisfaisant quelques faibles conditions additionnell&s ) ci-dessous), et si les données sont
i.i.d. de densitéf bornée relativement & la mesure de Lebesgu®$palors

d
limsup | 2 sup| (1) — Efu(1)] < c\/ 1£ lloo / K2(x)dr p.s.

n— 00 IOgan teRd

ou C est une constante dépendant uniquement &ous de faibles hypotheses supplémentaires,

nous démontrons que le suprémum normalisé ci-dessus converge p\#zwﬁrﬁnoo J K2(x) dx.

Nous démontrons aussi la convergence des fonctions génératrices des moments. Aucun des
sultats précédents ne requiert la stricte positivit¢ d€es résultats améliorent et étendent au cas
multivarié les résultats de Silverman [13] pour des densités univariées.

0 2002 Editions scientifiques et médicales Elsevier SAS

1. Introduction

Let f be a probability density with respect to Lebesgue measurB%ret X, X;,
i € N, be independent identically distribut®f-valued random variables with density
f,and letK be a bounded square integrable kernel (a measurable functiBf)ohet
a, \\ 0, na, — oco. The kernel density estimators ¢f based on the observations,
with kernel K and bandwidthga,}, are defined as

fn(t)zﬁi:K(t_X") (1.1)

noi=1 An

for all n € N (Rosenblatt [12]). Stute [14], Theorem 3.1, obtained the exact rate at which
the deviation off, with respect to its mean, weighted by its standard deviation, tends to
zero uniformly over compact parallellepipeds. The object of this note is to complement
Stute’s already classical result by obtaining the exact rate of a.s. convergence to zero
the supremum over all d®¢ of the deviation off, with respect to its mean, that is, of

I fr = Fulloo := sup| £, (1) — £, (0], 1.2)
teRd
where
1 ‘ t
- — X
fn(r>=Efn(r>=a—d/K( )f(x)dx, neN. (1.3)

n

We will see that when the sup is over the whole space we cannot divide by the standar
deviation (which is proportional tQ/f) but, on the other hand, is not required to be
non-zero. In the casé= 1, Silverman [13] obtained an approximate rate under assump-
tions on f, K and the bandwidths that are more restrictive than the assumptions we will
impose.

Ouir first result will only be approximate: it consists of an upper bound for (1.2), exact
only up to a multiplicative constant. Its interest rests upon the facts that the assumption
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on K and f are much weaker than is usual, that the interval of uniformity of the bound
consists of all olR?, and that it will be part of the proof of a more exact result. In fact
our second result gives the exact rate in (1.2) under slightly stronger assumpti&s on
andf.

The first result, which has an extremely simple proof, is based on direct application of
an exponential bound for empirical processes indexell 6yclasses of functions from
Giné and Guillou [7] which is just a reformulation of results of Talagrand [15,16] in a
form suitable for our purposes. Einmahl and Mason [6] use a similar inequality.

We obtain the second and main result, Theorem 3.3 below, which is asymptotically
exact, by combining the first one with a result that can be inferred with little effort from
the proof of the theorem in Einmahl and Mason [6]. We complement the a.s. convergenc
in Theorem 3.3 with moment bounds and with convergence of the moment generatin
functions.

After the present article had been completed and circulated, we learned from
P. Deheuvels that he had also recently obtained Theorem 3.3 in the particular case
d = 1 (Deheuvels [2], part of Theorem 3). Our result, which extends his to several
dimensions, was obtained independently and the proofs are different.

2. Thegeneral upper bound

We begin by describing the single most important ingredient in the proofs that follow,
which is Talagrand’s [15,16] remarkable exponential inequality for general empirical
processes, complemented by a moment inequality for empirical processes indexed &
classes of functions of Vapnikzervonenkis type (Talagrand [15] for classes of sets,
Giné and Guillou [7] for classes of functions). L&f, S) be a measurable space and
let F be a uniformly bounded collection of measurable functions on it. We sayAhat
is a bounded measurabWC class of functions if the clas® is separable or is image
admissible Suslin (Dudley [4, Section 5.3]) and if there exist positive numbeunsd v
such that, for every probability measuPeon (S, S) and every O< t < 1,

A v
N(F. La(P), | Fllym) < (;) , 2.1)

whereN (T, d, t) denotes the-covering number of the metric spacg, d), that is, the
smallest number of balls of radius not larger thaand centers iff needed to cover.

In the above inequality/ is the L,(P) distance. We will refer to number$ andv for
which the inequality holds for alP as a set o¥/C characteristics of the class, and we

will assume in what follows, without further mention, that> 3,/e andv > 1. These
definitions are made only because different authors use slightly different notations an
definitions. Set|®| # := sup;.+ |®(f)|. Let P be any probability measure ais, S)

and letg; : SN +— S, i € N, be the coordinate functions. Then,

THEOREM 2.1 (Talagrand [15,16]; in this form, Giné and Guillou [7])Let F be a
measurable uniformly bounded VC class of functions, and let 2 and U be any numbers
such that o2 > supyzVare f, U 2 supser || flloo @nd 0 < o < U. Then, there exist a
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universal constant B and constants C and L, depending only on the VC characteristics
A and v of the class F, such that

n

AU AU
E Z(f(é:i) —Ef(§))| <B {UU IOQ? + +/vy/no2log ?} (2.2)
i=1 F
and
Pf{ (fE)—Ef(&)|| > t}
i=1 F
1:¢ tU
<Lexpy ———logl 1+ (2.3)
p{ LU < L(«/E0+U,/Iog/‘0—u)2>}
whenever

A A
t>C{Ulog—U+«/Eo,/Iog—U]. (2.4)
o (o2

If o < cU for somec < 1 then lodAU /o) in this proposition can be replaced by
log(U /o) at the price of changing the constadtandC (that now depend onas well).
With some abuse of notation we will continue denoting therd'@nd L whenc = 1/2.
We single out inequality (2.3) for ‘the Gaussian range’:

COROLLARY 2.2 (Talagrand [15,16]; in this form, Giné and Guillou [7])Unader the
assumptions of Theorem 2.1, if moreover

0O<o<U/2 and ﬁo)U\/Iogg, (2.5)
o

there exist positive constants L and C depending only on A and v suchthat for all » > C

and ¢ satisfying
2
C«/Eomogg <t gkﬂ, (2.6)
o U
- 1log(1+1r/(4L)) t?
Pr{ S (fE) - Ef¢)| > t} < Lexp<_Z og( +,\ /( ))#) @2.7)
i=1 F
In particular, if
t:CZ«/ﬁo,/Iogg
with C, > C then
n U
Pr{ (fE) — Ef(£1)|| > Caov/n Iog;}
i=1 F
< Lexp{—CZIOg(l—;CZ/mL}) Iogg}. (2.8)
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In fact, Theorem 2.1 and Corollary 2.2 hold under the weaker condition: for every
probability measure® on (S, S) and every O< t < 1,

A v
N(F,La(P), T||Flloo) < (?> . (2.7)

When condition (2.5) holds, inequality (2.2) is optimal except for constants (see e.g.
Remark 3.6 below). Note also that the set’sfgiven by (2.6), for which the Gaussian
type inequality (2.7) holds, is precisely, up to multiplicative constants, the interval
between our bound for the mean (assuming (2.5)) and the break point in the one
dimensional Bernstein’s inequality for i.i.d. random variables bounded land with
varianceo 2. Thus, this range is optimal up to constants. Whereas the main thrust in
Alexander [1], Massart [9] and Talagrand [15] consists in finding the right constant
the exponent of (2.3), the size bfis not important for us here, but what we require is a
range ofr as large as possible for the validity of (2.7).

It is worth mentioning at this point that the second tool we will require in the proofs
below is Montgomery-Smith’s [10] maximal inequality (cf. de la Pefia and Giné [3]):

t
Pr{r&a};{ > t} < 9Pr{ > %} (2.9)
F F

forall r > 0.

Next we describe the hypotheses &n f and{a,} for our first result.

The hypothesis ok, taken from Giné, Koltchinskii and Zinn [8], is as follows:

(K1) K is a bounded, square integrable function in the linear span (the set of finite
linear combinations) of functionk > 0 satisfying the following property: the
subgraph ofk, {(s,u): k(s) > u}, can be represented as a finite number of
Boolean operations among sets of the fdkm u): p(s, u) > ¢(u)}, wherep is
a polynomial orR? x R andg is an arbitrary real function.

In particular this is satisfied bX (x) = ¢(p(x)), p being a polynomial and a
bounded real function of bounded variation (e.g., Nolan and Pollard [11]). Also, e.g.,
if the graph ofK is a pyramid (truncated or not), or K = /;_; 1,4, etc.

The above condition seems awkward, but it is quite general. It is imposed because, |
K satisfieqK,), then the class of functions

n

S (fENV—Ef(ED))

i=1

1

k
(fE—EfED)
=1

]—':{K(:>:teRd, aeRd\{O}} (2.10)

a

is a bounded/C class of measurable functions, that is, satisfies (2.1) for séraad
v and all probability measureB: this is a consequence of Theorems 4.2.1 and 4.2.4 of
Dudley [4] because the family of sets

{(s,u): p(t—s)/h,u) =pw}: teRY, h>0}

is contained in the family of positivity sets of a finite dimensional space of functions.
We should also note that, since the mapr, a) — K((t — x)/a) is jointly measurable,
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the classF is image admissible Suslin, hence measurable (Dudley [4, pp. 186-189]).
Thus, underK,), the classF defined by (2.10) is a bounded measura¥ class of
(measurable) functions.

We will only assume, on the density, that it is bounded, and the conditions on the
bandwidths will be those of Stute, with some regularity added, concretely,

na? |loga,|

n 07 g )
N |loga,| e loglogn

and a? < cad, (2.11)

for somec > 0.

THEOREM 2.3. —Assuming (K3), (2.11)and that f is a bounded density on R¢, we
have:

d
nag

limsup | fo = fallo=C as, (2.12)

n— 00 | Cln_l

where C2 < M2c| f ||| K ||3 for a constant M that depends only on the VC character-
istics of F.

Proof. — Monotonicity of {a,} (hence ofa, loga ! oncea, < e71) and Montgomery-
Smith’s maximal inequality (2.9) imply

d
nag

X sup

_ 1
Pr max ||fn_fn||oo>)‘ <9Pr
k=1 p 2k |Ogan_1 W
Zal t—X t—X A
Z{K( ’)—EK( )} } (2.13)
reR4 i=1 a a
Aok KA Agk—1

> _
30
for any A > 0. As mentioned above, the assumptions Korimply that the class of
functions F defined in (2.10) is a bounded measurabl€ class of functions. In
particular, we can apply Corollary 2.2 to the subclasses

r—-
sz{K<—>: teRY ax <a gazkl} (2.10)

a

with the samd. andC, for all k. For 7, since

/K2<t;x>f(x)dx:ad/Kz(u)f(t—ua)du<ad||f||oo||K||§»
Rd R

we can take
U= Kl and of=a%llfllxlKI53 (2.14)
Sinceax \ 0 andna?/loga, ! — oo, there existsko < oo such that, for alk > ko,

U
O'k<Uk/2 and \/ZkO'kZUk |Og—k,
\ Ok
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conditions required in order to apply inequality (2.8). Moreover, there ekists co
such that, for alk > k; < o0,

U
o2, /Iogo—k < \J2dead 21 K 3] f lloo logazts.
k

If we takea in (2.13) to be

A = 30Cv2dc| K |2l £1I1Y2,

whereC; is as in inequality (2.8), this inequality and (2.13) give

nad -
Pr{ max 1 fo = Fulloo > 30Cz\/2dCI|K||2||f||iéz}
k=1 2k IOgan
D U
<9L exp{——log—k}. (2.15)
L O

Since
log(Ur/o) _ 1ogUIK 113,/ (K 11511 f llsotie-1))
= — 0
logk 2logk
by (2.11), it follows that the probabilities in (2.15) are summable. Now, the theorem
follows by Borel-Cantelli and the zero-one lawa

Although it is not of great interest to us here, we note that, if the conda'ﬁoﬂ cagn
is replaced byiad 7 oo in Theorem 2.3, then one can replace the subsequenee?*
in the above proof by the subsequenge= [A¥] and then let. tend to 1, to conclude
that (2.12) holds witle = 1 in the constanC.

3. Theexact bound

The assumptions ok, f and{a,} in this section are slightly stronger than in the
previous one:

(Ky) K satisfies(K;) and moreover it is compactly supported (without loss of
generality, with support contained in the unit cube Rf), and is either
nonnegative or satisfiel,. K (s) ds =1,

(D,) the densityf is bounded and uniformly continuous &¢;

(W,) the sequencda,} satisfies conditions (2.11) with the last condition there
strengthened taa? 7 co.

In what follows, forx = (x1,...,x;) € R?, |x|, the norm ofx, will denote the
maximum length of the coordinatels;| := max <, |x;|. (It is irrelevant what norm we
take inR?, but this one is more convenient.) Also, we &l , := sup,.p, | (x)| for any
set D ¢ R? and functionk on RY. Let f be a probability density which is uniformly
continuous on all oR?, and letB, := {x: f(x) > O} C (suppf)°, the interior of the
support of f. Set

D :={x: f(x)>e|x| <&}, e>0.
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Then there igg > 0 such thatD, £ ¢ for 0 < € < g¢ and, by uniform continuity,

lim D= By, il fllp, =limflls, = 1£lls,=1fllc and limilfllpe =0,

(3.1)
whereD is the closure of; actually, || f || p, = || f]l~ for all ¢ small enough. To prove
our second result we will examing, — Ef, on D, and onD¢, and then let — O.

In what follows, ‘a cube’ means a closed hypercubdr6fwith sides parallel to the
axes, that is, a closed ball for tiig distance oRR.

The following proposition is basically contained in Einmahl and Mason [6]. We sketch
parts of the proof for the reader’s convenience since their result is given explicitly only
in one dimension, and then, for more general objects.

PrRoOPOSITION 3.1. —Under hypotheses (K>), (D,) and (W>), if D isa bounded open
setand D N By # @, we have:

. na¢ _
nll—>moo \/;”ﬂ Jallp = ||K||2||f||})/2 a.s. (3.2)

(where D can be replaced by its closure D in either side of the identity).

Proof (Sketch). — To obtain the exact upper bound, the Einmahl-Mason idea consists
of using Bernstein’s inequality, which is more exact than Talagrand’s (it has the right
multiplicative constant for the ‘Gaussian’ part of the tail probabilities), to estimate from
above the sup off, — Ef,| on the nodes of a discrete grid, and then use an inequality
similar to (2.3) in Theorem 2.1 (here we will use Corollary 2.2) to estimate the difference
between the original empirical process and its values over the nodes of the grid.

Note that, if D is as in the statement of the proposition, thefill, > 0 and the
diameter of D, diam(D), is finite. Givenx > 1 definen; = [A*], k € N. Let § be a
positive number. Sinc® is contained in a cube with side of length di@) < oo, it
follows that D (and D) can be covered witk, cubesc ;, each of side lengtBa,,, with

. d . d
diam(D) +1} < <2d|an”(D)> ’

day, day,

ﬁké{

where the last inequality holds for dlllarge enough (we will use the expression fall
large enough’ to mean ‘all > kg for someky < oo’). Let us choose points; ; € ¢x ;N D,
1<i < 4.

CLAIM 1.—For A>1landé$ > 0,

, 1 “ Zki — Xr ki — X
lim sup max max |y |K(=—")—-EK
k—o00 /anar‘zik Iogan_kd ng—1<n<ng 1< < r=1 ank ank

<A+ DILIFIK]2 as. (3.3)

The proof of this claim follows directly from the maximal version of Bernstein’s
inequality (Einmahl and Mason [5, Lemma 2.2]), just like in the proof of (2.16), Einmabhl
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and Mason [6], but using, instead of their estimates, the variance estimate

i — X
EKZ("”—) =af / K2) f (zxi — uan) du < al || fllpI K131+ &)
Rd

ay,

for somes;, — 0, which follows by the continuity of : The maximal form of Bernstein’s

inequality gives
n ;= Xr L X
Se( ) e ()]
1 Ay, Ay,

r=

Pr{ max max
1<i <y ng—1<n<ng

> (1+a)¢2nkaffk(Ioga;kd>||f||D||K||%}

< 2 exp(—z(l +8)?meay (loga, ) flpl KI5/ (2(1 +8nag | flnll KI5

k
+ 41K lloo\/2L+ 8)2miaf, (loga ) I IK 113 ) )

and, since, /nzaf. (loga,®)/nial — 0, this bound is dominated by

2 —d
2+ (diam D)?6~“a, ¢ exp(— (1+9)%(loga,, ))
1+ 8+ i
for somen, — 0, in particular, for allk large enough, by 2*(diam D)‘5~“a;, for
somer > 0. The claim now follows because€ a, < oo forall = > 0, by (2.11) and the
definition ofny.
Let now

g]/w-()»)={K<Zk’i _'> —K(Z_'>: ZGCk,iﬂD, nk_1<n§nk}, 1<l<€k

Ay, a,

Gi.:(0) is a measurabl&/C class of functions because its elements are differences of
functions belonging to tw&C classes (proving this involves only a simple estimate of
covering numbers). Moreover, there &€ characteristicsA andv for this class that do

not depend o, i or A, since the same is true & in (2.10).

CLAIM 2. —There exists an absolute constant C and, given ¢ > 0, there exist §, > 0
and A, > 1 suchthat, if 0 <8 <8,,1< A <A, and ny = [A], k € N, then

n

> Gx, —P)

r=1

, 1
limsup max max

k—oo ISU<lpnp_1<n<ng /anagk |Ogan—kd G,
Ji

<CVelflp as. (3.4

We will apply Proposition 2.1 t¢ >, (6x, — P)llg .- To this end, we see that we
can takel = 2|/ K || and we must find a good candidate éarConsider
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2
Jle(57) x5 s
ank ay
d Ay (2= Zk,i 2
zank/{K(u)—K<a—( ; +u>>} f (2 — uay,) du
n ny

2
Supf(zkl anku)/{K(u)—K<%<ﬂ+u>>} du.
|u|<l ay Ay

By uniform continuity of f, sincez; ; € D,

lim supmax sup f(zx.; — an,t) < || flp-

k—>oo ISk yI<1

Also, since|(1 — 2 )u < (1 — 27+ 27 |u| and, forz € ¢, 25 =il < 5 the two

arguments ofK |n the above integral can be made arbitrarily small just by taking
A close enough to 1§ small enough and large enough, which implies, by square
integrability of K, that the integral itself can be made arbitrarily small. So, by uniform
continuity of f and square integrability o, givene > 0 there are., > 1, §, > 0 and

ko = ko(1, &) > 0, such that, for 0< 8§ < 8., 1 <A < A, andk > kg(A, €), the above
integral is dominated byam Il fllp-. It then follows that we can take? = sam I flp-
ObV|ousto U/2 and,/n;o > U./log(U/o) for all k large enough becausg, — 0
andn;a? /Ioga‘l — 00. Then, there existd; < oo such that, fokk > k4, both

K2,
= < /fell flpadniloga,

U 1
o/niy/log— = /¢l fllpad ni,| =10
Vi [log — Sllpag, ni 5100 o ”f”Dm

and

1 lo
> 51004,
So, the exponential and the maximal inequalities from Section 2 (resp. (2.8) and (2.9))

give

Iog —

m °

Pr{ max max

—— Z<5x
1<i <Oy np_1<n<ng /nkad Ioga —d r

2diam(D) Cs
< - - -
< 9L( San, ) xp( oL loga,, )

<9-2/L(diam D)4 Cs/@L)~D1
forall k > kg Vv k1, whereCz = C, Iog(1+ C,/(4L)). We can choos€’;, large enough so
thatCs/(2L) — 1 > 0, in which case the above is the general term of a convergent series

(as loga; 1/ loglogn — o0), proving the claim by Borel-Cantelli.
Since, forn,_1 < n < ng,

>30C2\/8||f||1)}

g;,,w

nial IOga nial IOga
— = M < imsup <
k00 ”k—lank 1Iogank .

limsu
k00 P ad loga,
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Claims 1 and 2 give that, for adl > 0,0< § < 6§, and 1< A < A,,

limsup, | 2|n N fo = Fullo SVAA+8)IKI2V/ 1 fllp + CVAVel fllp  as,

n—oo
) nad
limsup _dllfn Fullo <IKI2V1 fllp  as.
n—oo 2|

Regarding the reverse inequality for the lim inf, we notice first that, géiverD, there
is a cubel c D such that both inf.; f(x) > | fllp(1—¢e/2) and P{X e I} < 1/2:
the intersection withD of any neighborhood of any point it where|| f|» is attained
contains such a cube by continuity ¢f Now we apply Proposition 2 in Einmahl and
Mason [6] by following the steps of the proof of their Proposition 3 from Eq. (2.48)
on. In the present case, If= [a, b] = {(x1, ..., x4): aj <x; < b ,j=1,...,d}, we
takez; , = a + 2ia, wherei = (i1, ...,ig),withi; =1,...,[(b; —aj)/(Za )] - 1 =4,,
j=1,...,d (notet, is independent of ) andk, = ¢4. Then, we replaceé, by a? in the
rest of their argument. The hypothesés> 0 or [ K (x) dx = 1 are needed to check the
hypotheses on mean and variance in Proposition 2 of Einmahl and Mason [6]. Also, ir
our casecy = 0 andd; = 1, which makes for considerably easier expressions. Details
are omitted. O

and therefore,

Next, we estimate the a.s. size of the random varidile- £, », assuming onlyD N
By # (. For this, we can proceed exactly as in Theorem 2.3 with a change in the estimat
of the variance: The uniform continuity of implies that lim_osup. ;. p)-. f(x)
= |Ifllp > 0 (note thatf is not identically zero omD). So, we have that fot large
enough depending ob, andax < b < ax-1,

/KZ( )f(x)dx bd/K W) £t — ub) du < 259 F o IK 2.

Therefore, in this case we can takg = 25, || fl| o K|3 in (2.14) and we have, as a
consequence of the proof of Theorem 2.3, that the following holds:

PrRoPOSITION 3.2. —Under hypotheses (K>), (D) and (W), if DN B, # @, then

, nad
limsup, | loga Ifu = fullo <MVIFIDIK]2 as, (3.9)

for a constant M < oo that depends only on the V C characteristics of the class 7.

Combining the last two propositions, we obtain the main result of this article:
THEOREM 3.3. —Under hypotheses (K>), (D,) and (W>), we have:

d
lim

n—00 2|

— Ny = fullo = IK 2l £1I2?  as. (3.6)
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Proof. — Take D, = {x: f(x) > ¢, |x| < ¢!} as defined immediately above (3.1).
Note thatD, satisfies the hypotheses @nin Proposition 3.1, and¢ the hypothesis
on D in Proposition 3.2. Then, Proposition 3.1 and the limits (3.1) give

na? -
I. i f n n OO/I I n n
imin \/ — 1 fu = full Im im ‘/2|o <l fu = fullp.

ZLILHOIIKHzIIfII%/EZ:||K||2||f||i</>2 as. (37)

For the reverse inequality, we note that, by Propositions 3.1 and 3.2,

Iimsup\/ — 1 fu = fulloo
n—oo

. d -
< Jim 2|0 s Ifa — ﬁ1IIDE+I|ans£p || fu— fullpe

||K||2||f||l/2+M||K||2||f||1/2 as.
Letting e N\ 0 and using (3.1) we finally obtain

Iimsup\/ — 1 fu = fulloo <K 20l FIZZ @,
n—oo

which, together with (3.7), proves the theorenm

Note that the density” in Theorem 3.3 needs not be strictly positiveRf not even
on the interior of its support. One might ask whether the limit (3.6) can be improved to
fn - f_n

| nal
m
n—oo \l 2loga;?| Jf

assuming only the hypotheses of Theorem 3.3 and that, in addifiois, strictly
positive onR?. This is even false for the normal density Ry in fact, if X, X;,

i eN,areiid.N(0,1) and e.g.K(0) # 0 anda, =n~® for somexa € (0, 1), then the
sequence of random variables in (3.8) is not even stochastically bounded. To see this, v
first note that, by Montgomery-Smith’s maximal inequality together with the fact that
sup.r EK((t — X)/a,)/+/ f () = O(a,) (which follows by an easy direct computation),

it suffices to prove that the sequence

=|K|, a.s. (3.8)

o]

Vo T }
\/na,loga;t

is not stochastically bounded. Then, we observe that

{ maX1<i<n H M

K((Z - Xi)/an)
ViQ)

‘ K (0)
> .
f(maxc, | X;|)

1<i<n
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Finally, givenM > 0, for all n large enough and for @ o’ < @ < 1, we have

1
Prf - \/Mna,0ga; 1) > Pr{maxix,| > 20~ Togn .
f(maxg, [X;]) i<n

and this last probability tends to 1 because it is larger than(1 — n=")" for
0 < o” <o andn large enough. Similar estimates show that the sequence in (3.8)
is not stochastically bounded K has the symmetric exponential distribution orXif
has a power type densityf(x) = ¢/|x|" for large|x|). That is, the lack of stochastic
boundedness of the sequence (3.8) does not depend on the rate atf\@hidbnds to
zero when|x| — co. A slight modification of these computations also shows that (3.8)
with /f replaced byf#, 0 < 8 < 1/2, does not hold either for 4+ 28 < a < 1 in the
normal and exponential cases.

Finally, we consider convergence of moments in Theorem 3.3.

COROLLARY 3.4. —Under the hypotheses of Theorem 2.3, for all » € R,

I n niioo

and, under the hypotheses of Theorem 3.3,

nad -
lim E A n — Fulleo b = Al K s 3.10
Jim_ eXp{ ”2|ogan—d”f fall } exp{AIK 21l F1I557} (3.10)

for all » € R;in particular there is convergence of all momentsin (3.6), Theorem 3.3

Proof. — We can apply inequality (2.8) to the class of functions
Fo={K((t —)/a,): t eR?}

with U = ||K [l ando? = a?|| f|lIK |13 (as in (2.14)), and then, taking the form of the
constant in the exponent of (2.8) into account, integrate with respé&ctt tioe resulting
bound on the tail probabilities of the random variables in (3.9). This immediately gives
(3.9). Now, (3.10) follows from Theorem 3.3 and the uniform integrability provided by
inequality (3.9). O

Remark 3.5. — The continuity condition oy can be somewhat relaxed: the proof of
Theorem 3.3, with only formal modifications (e.g. consider ohlyin Proposition 3.1
and D¢ N By in Proposition 3.2) yields that, ifK») and(W-) hold and we assume that
By is open, thatf is continuous and bounded @&y and that lim, .« f(x) =0, then

lim / na; sup| £, (1) — £, ()] = 1K ll21l £ 12
oo\ 2|logad| rep, " A 2l oo -

This applies for instance to the exponential distribution.
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Remark 3.6. — One may ask how sharp, up to constants, is the bound (2.2) for the
expected value of the supremum of an empirical process. With the same choiges for
U ando as in the previous proof, this bound gives the followingKifand f are as in
the first paragraph of the introduction, if

IFIY21K 2 1K oo
IKlloo " IFIZNK 12

a,‘f/zgclmin< ) and na’/loga > C,

for some O< C; < 1 andC; > 0, then there exist€3 < oo depending only oy, C»,
d, K lloo, IKl2 @and]| floo, SUch that

nad -
EB;EIE”fh—xﬁ”mfica

By Corollary 3.4, this is exact up to the value of the consi@nt On the other hand
U. Einmahl and one of us have observed tl—Aroé{{ in equality (2.2) can be replaced
(twice) by min(AU /o, n) (twice). This follows from the proof of (2.2) in [7] or from
an inequality in [6].

The moment bounds in Corollary 3.4 and Remark 3.6 apply to minimax risk in density
estimation (Massart [9, p. 395]).
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