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ABSTRACT. – Let fn denote the usual kernel density estimator in several dimensions. It is
shown that if{an} is a regular band sequence,K is a bounded square integrable kernel of several
variables, satisfying some additional mild conditions ((K1) below), and if the data consist of
an i.i.d. sample from a distribution possessing a bounded densityf with respect to Lebesgue
measure onRd , then

lim sup
n→∞

√
nadn

loga−1
n

sup
t∈Rd

|fn(t)−Efn(t)| � C
√

‖f ‖∞
∫
K2(x)dx a.s.

for some absolute constantC that depends only ond. With some additional but still weak
conditions, it is proved that the above sequence of normalized suprema converges a.s. to√

2d‖f ‖∞
∫
K2(x)dx. Convergence of the moment generating functions is also proved. Neither

of these results requiref to be strictly positive. These results improve upon, and extend to several
dimensions, results by Silverman [13] for univariate densities.
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RÉSUMÉ. – Soit fn l’estimateur à noyau d’une densité multivariée. Nous démontrons dans
cet article que si{an} est une suite régulière,K un noyau multivarié borné de carré intégrable,
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satisfaisant quelques faibles conditions additionnelles ((K1) ci-dessous), et si les données sont
i.i.d. de densitéf bornée relativement à la mesure de Lebesgue surRd , alors

lim sup
n→∞

√
nadn

loga−1
n

sup
t∈Rd

|fn(t)−Efn(t)| � C
√

‖f ‖∞
∫
K2(x)dx p.s.

oùC est une constante dépendant uniquement ded. Sous de faibles hypothèses supplémentaires,

nous démontrons que le suprémum normalisé ci-dessus converge p.s. vers
√

2d‖f ‖∞
∫
K2(x)dx.

Nous démontrons aussi la convergence des fonctions génératrices des moments. Aucun des ré-
sultats précédents ne requiert la stricte positivité def . Ces résultats améliorent et étendent au cas
multivarié les résultats de Silverman [13] pour des densités univariées.
 2002 Éditions scientifiques et médicales Elsevier SAS

1. Introduction

Let f be a probability density with respect to Lebesgue measure onRd , let X,Xi ,
i ∈ N, be independent identically distributedRd -valued random variables with density
f , and letK be a bounded square integrable kernel (a measurable function onRd ). Let
an ↘ 0, nan → ∞. The kernel density estimators off based on the observationsXi ,
with kernelK and bandwidths{an}, are defined as

fn(t)= 1

nadn

n∑
i=1

K

(
t −Xi
an

)
(1.1)

for all n ∈ N (Rosenblatt [12]). Stute [14], Theorem 3.1, obtained the exact rate at which
the deviation offn with respect to its mean, weighted by its standard deviation, tends to
zero uniformly over compact parallellepipeds. The object of this note is to complement
Stute’s already classical result by obtaining the exact rate of a.s. convergence to zero of
the supremum over all ofRd of the deviation offn with respect to its mean, that is, of

‖fn − f̄n‖∞ := sup
t∈Rd

∣∣fn(t)− f̄n(t)∣∣, (1.2)

where

f̄n(t)=Efn(t)= 1

adn

d∫
R

K

(
t − x
an

)
f (x)dx, n ∈ N. (1.3)

We will see that when the sup is over the whole space we cannot divide by the standard
deviation (which is proportional to

√
f ) but, on the other hand,f is not required to be

non-zero. In the cased = 1, Silverman [13] obtained an approximate rate under assump-
tions onf ,K and the bandwidths that are more restrictive than the assumptions we will
impose.

Our first result will only be approximate: it consists of an upper bound for (1.2), exact
only up to a multiplicative constant. Its interest rests upon the facts that the assumptions
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onK andf are much weaker than is usual, that the interval of uniformity of the bound
consists of all ofRd , and that it will be part of the proof of a more exact result. In fact
our second result gives the exact rate in (1.2) under slightly stronger assumptions onK

andf .
The first result, which has an extremely simple proof, is based on direct application of

an exponential bound for empirical processes indexed byVC classes of functions from
Giné and Guillou [7] which is just a reformulation of results of Talagrand [15,16] in a
form suitable for our purposes. Einmahl and Mason [6] use a similar inequality.

We obtain the second and main result, Theorem 3.3 below, which is asymptotically
exact, by combining the first one with a result that can be inferred with little effort from
the proof of the theorem in Einmahl and Mason [6]. We complement the a.s. convergence
in Theorem 3.3 with moment bounds and with convergence of the moment generating
functions.

After the present article had been completed and circulated, we learned from
P. Deheuvels that he had also recently obtained Theorem 3.3 in the particular case of
d = 1 (Deheuvels [2], part of Theorem 3). Our result, which extends his to several
dimensions, was obtained independently and the proofs are different.

2. The general upper bound

We begin by describing the single most important ingredient in the proofs that follow,
which is Talagrand’s [15,16] remarkable exponential inequality for general empirical
processes, complemented by a moment inequality for empirical processes indexed by
classes of functions of Vapnik–Červonenkis type (Talagrand [15] for classes of sets,
Giné and Guillou [7] for classes of functions). Let(S,S) be a measurable space and
let F be a uniformly bounded collection of measurable functions on it. We say thatF
is a bounded measurableVC class of functions if the classF is separable or is image
admissible Suslin (Dudley [4, Section 5.3]) and if there exist positive numbersA andv
such that, for every probability measureP on (S,S) and every 0< τ < 1,

N
(
F,L2(P ), τ‖F‖L2(P )

)
�

(
A

τ

)v
, (2.1)

whereN(T, d, τ) denotes theτ -covering number of the metric space(T , d), that is, the
smallest number of balls of radius not larger thanτ and centers inT needed to coverT .
In the above inequality,d is theL2(P ) distance. We will refer to numbersA andv for
which the inequality holds for allP as a set ofVC characteristics of the classF , and we
will assume in what follows, without further mention, thatA � 3

√
e andv � 1. These

definitions are made only because different authors use slightly different notations and
definitions. Set‖�‖F := supf∈F |�(f )|. Let P be any probability measure on(S,S)
and letξi :SN �→ S, i ∈ N, be the coordinate functions. Then,

THEOREM 2.1 (Talagrand [15,16]; in this form, Giné and Guillou [7]). –Let F be a
measurable uniformly bounded VC class of functions, and let σ 2 and U be any numbers
such that σ 2 � supf∈F VarPf , U � supf∈F ‖f ‖∞ and 0< σ � U . Then, there exist a
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universal constant B and constants C and L, depending only on the VC characteristics
A and v of the class F , such that

E

∥∥∥∥∥
n∑
i=1

(
f (ξi)−Ef (ξ1))

∥∥∥∥∥
F

�B
[
vU log

AU

σ
+ √

v

√
nσ 2 log

AU

σ

]
, (2.2)

and

Pr

{∥∥∥∥∥
n∑
i=1

(
f (ξi)−Ef (ξ1))

∥∥∥∥∥
F
> t

}

� Lexp
{

− 1

L

t

U
log

(
1+ tU

L
(√
nσ +U

√
log AU

σ

)2

)}
(2.3)

whenever

t � C
[
U log

AU

σ
+ √

nσ

√
log
AU

σ

]
. (2.4)

If σ � cU for somec < 1 then log(AU/σ) in this proposition can be replaced by
log(U/σ ) at the price of changing the constantsL andC (that now depend onc as well).
With some abuse of notation we will continue denoting them asC andL whenc = 1/2.
We single out inequality (2.3) for ‘the Gaussian range’:

COROLLARY 2.2 (Talagrand [15,16]; in this form, Giné and Guillou [7]). –Under the
assumptions of Theorem 2.1, if moreover

0< σ <U/2 and
√
nσ �U

√
log
U

σ
, (2.5)

there exist positive constants L and C depending only on A and v such that for all λ�C
and t satisfying

C
√
nσ

√
log
U

σ
� t � λnσ

2

U
, (2.6)

Pr

{∥∥∥∥∥
n∑
i=1

(
f (ξi)−Ef (ξ1))

∥∥∥∥∥
F
> t

}
� Lexp

(
− 1

L

log(1+ λ/(4L))
λ

t2

nσ 2

)
. (2.7)

In particular, if

t = C2
√
nσ

√
log
U

σ

with C2 � C then

Pr

{∥∥∥∥∥
n∑
i=1

(
f (ξi)−Ef (ξ1))

∥∥∥∥∥
F
>C2σ

√
n

√
log
U

σ

}

�Lexp
{

−C2 log(1+C2/(4L))

L
log
U

σ

}
. (2.8)
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In fact, Theorem 2.1 and Corollary 2.2 hold under the weaker condition: for every
probability measureP on (S,S) and every 0< τ < 1,

N
(
F,L2(P ), τ‖F‖∞

)
�

(
A

τ

)v
. (2.1′)

When condition (2.5) holds, inequality (2.2) is optimal except for constants (see e.g.
Remark 3.6 below). Note also that the set oft ’s given by (2.6), for which the Gaussian
type inequality (2.7) holds, is precisely, up to multiplicative constants, the interval
between our bound for the mean (assuming (2.5)) and the break point in the one-
dimensional Bernstein’s inequality for i.i.d. random variables bounded byU and with
varianceσ 2. Thus, this range is optimal up to constants. Whereas the main thrust in
Alexander [1], Massart [9] and Talagrand [15] consists in finding the right constantL in
the exponent of (2.3), the size ofL is not important for us here, but what we require is a
range oft as large as possible for the validity of (2.7).

It is worth mentioning at this point that the second tool we will require in the proofs
below is Montgomery-Smith’s [10] maximal inequality (cf. de la Peña and Giné [3]):

Pr

{
max
k�n

∥∥∥∥∥
k∑
i=1

(
f (ξi)−Ef (ξi))

∥∥∥∥∥
F
> t

}
� 9Pr

{∥∥∥∥∥
n∑
i=1

(
f (ξi)−Ef (ξi))

∥∥∥∥∥
F
>
t

30

}
(2.9)

for all t > 0.
Next we describe the hypotheses onK , f and{an} for our first result.
The hypothesis onK , taken from Giné, Koltchinskii and Zinn [8], is as follows:
(K1) K is a bounded, square integrable function in the linear span (the set of finite

linear combinations) of functionsk � 0 satisfying the following property: the
subgraph ofk, {(s, u): k(s) � u}, can be represented as a finite number of
Boolean operations among sets of the form{(s, u): p(s, u)� ϕ(u)}, wherep is
a polynomial onRd × R andϕ is an arbitrary real function.

In particular this is satisfied byK(x) = φ(p(x)), p being a polynomial andφ a
bounded real function of bounded variation (e.g., Nolan and Pollard [11]). Also, e.g.,
if the graph ofK is a pyramid (truncated or not), or ifK = I[−1,1]d , etc.

The above condition seems awkward, but it is quite general. It is imposed because, if
K satisfies(K1), then the class of functions

F =
{
K

(
t − ·
a

)
: t ∈ Rd , a ∈ Rd \ {0}

}
(2.10)

is a boundedVC class of measurable functions, that is, satisfies (2.1) for someA and
v and all probability measuresP : this is a consequence of Theorems 4.2.1 and 4.2.4 of
Dudley [4] because the family of sets

{{
(s, u): p

(
(t − s)/h,u) � ϕ(u)

}
: t ∈ Rd, h > 0

}
is contained in the family of positivity sets of a finite dimensional space of functions.
We should also note that, since the map(t, x, a) �→K((t − x)/a) is jointly measurable,
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the classF is image admissible Suslin, hence measurable (Dudley [4, pp. 186–189]).
Thus, under(K1), the classF defined by (2.10) is a bounded measurableVC class of
(measurable) functions.

We will only assume, on the densityf , that it is bounded, and the conditions on the
bandwidths will be those of Stute, with some regularity added, concretely,

an ↘ 0,
nadn

| logan| → ∞, | logan|
log logn

→ ∞ and adn � cad2n (2.11)

for somec > 0.

THEOREM 2.3. –Assuming (K1), (2.11)and that f is a bounded density on Rd , we
have:

lim sup
n→∞

√
nadn

loga−1
n

‖fn − f̄n‖∞ = C a.s., (2.12)

where C2 �M2c‖f ‖∞‖K‖2
2 for a constant M that depends only on the VC character-

istics of F .

Proof. – Monotonicity of {an} (hence ofan loga−1
n oncean < e−1) and Montgomery-

Smith’s maximal inequality (2.9) imply

Pr

{
max

2k−1<n�2k

√
nadn

loga−1
n

‖fn − f̄n‖∞ > λ
}

� 9Pr

{
1√

2k−1ad2k loga−1
2k

× sup
t∈Rd

a2k�a�a2k−1

∣∣∣∣∣
2k∑
i=1

[
K

(
t −Xi
a

)
−EK

(
t −Xi
a

)]∣∣∣∣∣> λ

30

}
(2.13)

for any λ > 0. As mentioned above, the assumptions onK imply that the class of
functions F defined in (2.10) is a bounded measurableVC class of functions. In
particular, we can apply Corollary 2.2 to the subclasses

Fk =
{
K

(
t − ·
a

)
: t ∈ Rd, a2k � a � a2k−1

}
(2.10′)

with the sameL andC2 for all k. ForFk , since
∫

Rd

K2
(
t − x
a

)
f (x)dx = ad

∫
Rd

K2(u)f (t − ua)du� ad‖f ‖∞‖K‖2
2,

we can take

Uk = ‖K‖∞ and σ 2
k = ad2k−1‖f ‖∞‖K‖2

2. (2.14)

Sincea2k ↘ 0 andnadn/ loga−1
n → ∞, there existsk0<∞ such that, for allk � k0,

σk < Uk/2 and
√

2k σk �Uk

√
log
Uk

σk
,
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conditions required in order to apply inequality (2.8). Moreover, there existsk1 <∞
such that, for allk � k1<∞,

σk
√

2k
√

log
Uk

σk
�

√
2dcad2k2

k−1‖K‖2
2‖f ‖∞ loga−1

2k−1.

If we takeλ in (2.13) to be

λ= 30C2

√
2dc‖K‖2‖f ‖1/2

∞ ,

whereC2 is as in inequality (2.8), this inequality and (2.13) give

Pr

{
max

2k−1<n�2k

√
nadn

loga−1
n

‖fn − f̄n‖∞ > 30C2

√
2dc‖K‖2‖f ‖1/2

∞

}

� 9Lexp
{

−D
L

log
Uk

σk

}
. (2.15)

Since

log(Uk/σk)

logk
= log(‖K‖2∞/(‖K‖2

2‖f ‖∞ad2k−1))

2 logk
→ ∞

by (2.11), it follows that the probabilities in (2.15) are summable. Now, the theorem
follows by Borel–Cantelli and the zero-one law.✷

Although it is not of great interest to us here, we note that, if the conditionadn � cad2n
is replaced bynadn ↗ ∞ in Theorem 2.3, then one can replace the subsequencenk = 2k

in the above proof by the subsequencenk = [λk] and then letλ tend to 1, to conclude
that (2.12) holds withc= 1 in the constantC.

3. The exact bound

The assumptions onK , f and {an} in this section are slightly stronger than in the
previous one:
(K2) K satisfies(K1) and moreover it is compactly supported (without loss of

generality, with support contained in the unit cube ofRd ), and is either
nonnegative or satisfies

∫
Rd K(s)ds = 1;

(D2) the densityf is bounded and uniformly continuous onRd ;
(W2) the sequence{an} satisfies conditions (2.11) with the last condition there

strengthened tonadn ↗ ∞.
In what follows, for x = (x1, . . . , xd) ∈ Rd , |x|, the norm ofx, will denote the

maximum length of the coordinates,|x| := maxi�d |xi|. (It is irrelevant what norm we
take inRd , but this one is more convenient.) Also, we set‖h‖D := supx∈D |h(x)| for any
setD ⊂ Rd and functionh on Rd . Let f be a probability density which is uniformly
continuous on all ofRd , and letBf := {x: f (x) > 0} ⊆ (suppf )◦, the interior of the
support off . Set

Dε := {
x: f (x) > ε, |x|< ε−1}, ε > 0.
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Then there isε0> 0 such thatDε �= ∅ for 0< ε < ε0 and, by uniform continuity,

lim
ε↘0
Dε =Bf , lim

ε↘0
‖f ‖Dε = lim

ε↘0
‖f ‖D̄ε = ‖f ‖Bf = ‖f ‖∞ and lim

ε↘0
‖f ‖Dcε = 0,

(3.1)
whereD̄ is the closure ofD; actually,‖f ‖Dε = ‖f ‖∞ for all ε small enough. To prove
our second result we will examinefn −Efn onDε and onDcε , and then letε→ 0.

In what follows, ‘a cube’ means a closed hypercube ofRd with sides parallel to the
axes, that is, a closed ball for the0∞d distance ofRd .

The following proposition is basically contained in Einmahl and Mason [6]. We sketch
parts of the proof for the reader’s convenience since their result is given explicitly only
in one dimension, and then, for more general objects.

PROPOSITION 3.1. –Under hypotheses (K2), (D2) and (W2), ifD is a bounded open
set and D ∩Bf �= ∅, we have:

lim
n→∞

√
nadn

2 loga−d
n

‖fn − f̄n‖D = ‖K‖2‖f ‖1/2
D a.s. (3.2)

(where D can be replaced by its closure D̄ in either side of the identity).

Proof (Sketch). – To obtain the exact upper bound, the Einmahl–Mason idea consists
of using Bernstein’s inequality, which is more exact than Talagrand’s (it has the right
multiplicative constant for the ‘Gaussian’ part of the tail probabilities), to estimate from
above the sup of|fn − Efn| on the nodes of a discrete grid, and then use an inequality
similar to (2.3) in Theorem 2.1 (here we will use Corollary 2.2) to estimate the difference
between the original empirical process and its values over the nodes of the grid.

Note that, ifD is as in the statement of the proposition, then‖f ‖D > 0 and the
diameter ofD, diam(D), is finite. Givenλ > 1 definenk = [λk], k ∈ N. Let δ be a
positive number. SinceD is contained in a cube with side of length diam(D) <∞, it
follows thatD (andD̄) can be covered with0k cubesck,i , each of side lengthδank , with

0k �
[

diam(D)

δank
+ 1

]d
�

(
2diam(D)

δank

)d
,

where the last inequality holds for allk large enough (we will use the expression ‘allk
large enough’ to mean ‘allk � k0 for somek0<∞’). Let us choose pointszk,i ∈ ck,i∩D,
1� i � 0k.

CLAIM 1. –For λ > 1 and δ > 0,

lim sup
k→∞

1√
2nkadnk loga−d

nk

max
nk−1<n�nk

max
1�i�0k

∣∣∣∣∣
n∑
r=1

[
K

(
zk,i −Xr
ank

)
−EK

(
zk,i −X
ank

)]∣∣∣∣∣
� (1+ δ)‖f ‖1/2

D ‖K‖2 a.s. (3.3)

The proof of this claim follows directly from the maximal version of Bernstein’s
inequality (Einmahl and Mason [5, Lemma 2.2]), just like in the proof of (2.16), Einmahl
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and Mason [6], but using, instead of their estimates, the variance estimate

EK2
(
zk,i −X
ank

)
= adnk

∫
Rd

K2(u)f (zk,i − uank )du� adnk‖f ‖D‖K‖2
2(1+ δk)

for someδk → 0, which follows by the continuity off : The maximal form of Bernstein’s
inequality gives

Pr

{
max

1�i�0k
max

nk−1<n�nk

∣∣∣∣∣
n∑
r=1

[
K

(
zk,i −Xr
ank

)
−EK

(
zk,i −X
ank

)]∣∣∣∣∣
> (1+ δ)

√
2nkadnk (loga−d

nk
)‖f ‖D‖K‖2

2

}

� 20k exp
(
−2(1+ δ)2nkadnk

(
loga−d

nk

)‖f ‖D‖K‖2
2/

(
2(1+ δk)nkadnk‖f ‖D‖K‖2

2

+ 4
3‖K‖∞

√
2(1+ δ)2nkadnk (loga−d

nk
)‖f ‖D‖K‖2

2

))

and, since
√
nkadnk (loga−d

nk
)/nka

d
nk

→ 0, this bound is dominated by

2d+1(diamD)dδ−da−d
nk

exp
(

−(1+ δ)2(loga−d
nk
)

1+ δk + ηk
)

for someηk → 0, in particular, for allk large enough, by 2d+1(diam D)dδ−daτnk for
someτ > 0. The claim now follows because

∑
aτnk <∞ for all τ > 0, by (2.11) and the

definition ofnk.
Let now

G′
k,i(λ)=

{
K

(
zk,i − ·
ank

)
−K

(
z− ·
an

)
: z ∈ ck,i ∩D, nk−1< n� nk

}
, 1� i � 0k.

G′
k,i (λ) is a measurableVC class of functions because its elements are differences of

functions belonging to twoVC classes (proving this involves only a simple estimate of
covering numbers). Moreover, there areVC characteristicsA andv for this class that do
not depend onk, i or λ, since the same is true forF in (2.10).

CLAIM 2. –There exists an absolute constant C and, given ε > 0, there exist δε > 0
and λε > 1 such that, if 0< δ � δε , 1< λ� λε and nk = [λk], k ∈ N, then

lim sup
k→∞

max
1�i�0k

max
nk−1<n�nk

1√
2nkadnk loga−d

nk

∥∥∥∥∥
n∑
r=1

(δXr −P)
∥∥∥∥∥
G ′
k,i
(λ)

� C
√
ε‖f ‖D a.s. (3.4)

We will apply Proposition 2.1 to‖∑n
r=1(δXr − P)‖G ′

k,i
(λ). To this end, we see that we

can takeU = 2‖K‖∞ and we must find a good candidate forσ . Consider
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∫ [
K

(
zk,i − x
ank

)
−K

(
z− x
an

)]2

f (x)dx

= adnk
∫ [
K(u)−K

(
ank

an

(
z− zk,i
ank

+ u
))]2

f (zk,i − uank )du

� adnk sup
|u|�1

f (zk,i − anku)
∫ [
K(u)−K

(
ank

an

(
z− zk,i
ank

+ u
))]2

du.

By uniform continuity off , sincezk,i ∈D,

lim sup
k→∞

max
i�0k

sup
|u|�1

f (zk,i − anku)� ‖f ‖D.

Also, since|(1 − ank
an
)u| � (1 − λ−1 + λ−k)|u| and, forz ∈ ck,i , ankan

|z−zk,i |
ank

� δ, the two

arguments ofK in the above integral can be made arbitrarily small just by taking
λ close enough to 1,δ small enough andk large enough, which implies, by square
integrability ofK , that the integral itself can be made arbitrarily small. So, by uniform
continuity off and square integrability ofK , givenε > 0 there areλε > 1, δε > 0 and
k0 = k0(λ, ε) > 0, such that, for 0< δ � δε, 1< λ � λε and k � k0(λ, ε), the above
integral is dominated byεadnk‖f ‖D . It then follows that we can takeσ 2 = εadnk‖f ‖D.
Obviouslyσ �U/2 and

√
nk σ �U

√
log(U/σ ) for all k large enough becauseank → 0

andnkadnk / loga−1
nk

→ ∞. Then, there existsk1<∞ such that, fork � k1, both

σ
√
nk

√
log
U

σ
=

√
ε‖f ‖Dadnknk

√√√√1

2
log

4‖K‖2∞
ε‖f ‖Dadnk

�
√
ε‖f ‖Dadnknk loga−d

nk
,

and

log
U

σ
� 1

2
loga−d

nk
.

So, the exponential and the maximal inequalities from Section 2 (resp. (2.8) and (2.9)),
give

Pr

{
max

1�i�0k
max

nk−1<n�nk

1√
nkadnk loga−d

nk

∥∥∥∥∥
n∑
r=1

(δXr − P)
∥∥∥∥∥
G ′
k,i
(λ)

> 30C2

√
ε‖f ‖D

}

� 9L
(

2diam(D)

δank

)d
exp

(
−C3

2L
loga−d

nk

)

� 9 · 2dL(diamD)dδ−da(C3/(2L)−1)d
nk

for all k � k0 ∨ k1, whereC3 = C2 log(1+C2/(4L)). We can chooseC2 large enough so
thatC3/(2L)− 1> 0, in which case the above is the general term of a convergent series
(as loga−1

n / log logn→ ∞), proving the claim by Borel–Cantelli.
Since, fornk−1< n� nk,

lim sup
k→∞

nka
d
nk

loga−d
nk

nadn loga−d
n

� lim sup
k→∞

nka
d
nk

loga−d
nk

nk−1a
d
nk−1

loga−d
nk−1

� λ,
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Claims 1 and 2 give that, for allε > 0, 0< δ � δε and 1< λ< λε,

lim sup
n→∞

√
nadn

2 loga−d
n

‖fn − f̄n‖D �
√
λ(1+ δ)‖K‖2

√‖f ‖D +C√
λ
√
ε‖f ‖D a.s.,

and therefore,

lim sup
n→∞

√
nadn

2 loga−d
n

‖fn − f̄n‖D � ‖K‖2

√‖f ‖D a.s.

Regarding the reverse inequality for the lim inf, we notice first that, givenε > 0, there
is a cubeĪ ⊂ D such that both infx∈Ī f (x) � ‖f ‖D(1 − ε/2) and Pr{X ∈ Ī } � 1/2:
the intersection withD of any neighborhood of any point in̄D where‖f ‖D is attained
contains such a cube by continuity off . Now we apply Proposition 2 in Einmahl and
Mason [6] by following the steps of the proof of their Proposition 3 from Eq. (2.48)
on. In the present case, if̄I = [ā, b̄] = {(x1, . . . , xd): āj � xj � b̄j , j = 1, . . . , d}, we
takezi,n = ā+ 2ian wherei = (i1, . . . , id), with ij = 1, . . . , [(b̄j − āj )/(2an)]− 1 := 0n,
j = 1, . . . , d (note0n is independent ofj ) andkn = 0dn. Then, we replacehn by adn in the
rest of their argument. The hypothesesK � 0 or

∫
K(x)dx = 1 are needed to check the

hypotheses on mean and variance in Proposition 2 of Einmahl and Mason [6]. Also, in
our case,cf = 0 anddf = 1, which makes for considerably easier expressions. Details
are omitted. ✷

Next, we estimate the a.s. size of the random variable‖fn− f̄n‖D , assuming onlyD∩
Bf �= ∅. For this, we can proceed exactly as in Theorem 2.3 with a change in the estimate
of the variance: The uniform continuity off implies that limε→0 supx: d(x,D)<ε f (x)= ‖f ‖D > 0 (note thatf is not identically zero onD). So, we have that fork large
enough depending onD, anda2k � b � a2k−1,

∫
Rd

K2
(
t − x
b

)
f (x)dx = bd

∫
Rd

K2(u)f (t − ub)du� 2bd‖f ‖D‖K‖2
2.

Therefore, in this case we can takeσ 2
k = 2ad2k−1‖f ‖D‖K‖2

2 in (2.14) and we have, as a
consequence of the proof of Theorem 2.3, that the following holds:

PROPOSITION 3.2. –Under hypotheses (K2), (D2) and (W2), if D ∩Bf �= ∅, then

lim sup
n→∞

√
nadn

loga−d
n

‖fn − f̄n‖D �M
√‖f ‖D‖K‖2 a.s., (3.5)

for a constant M <∞ that depends only on the VC characteristics of the class F .

Combining the last two propositions, we obtain the main result of this article:

THEOREM 3.3. –Under hypotheses (K2), (D2) and (W2), we have:

lim
n→∞

√
nadn

2 loga−d
n

‖fn − f̄n‖∞ = ‖K‖2‖f ‖1/2
∞ a.s. (3.6)
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Proof. – TakeDε = {x: f (x) > ε, |x| < ε−1} as defined immediately above (3.1).
Note thatDε satisfies the hypotheses onD in Proposition 3.1, andDcε the hypothesis
onD in Proposition 3.2. Then, Proposition 3.1 and the limits (3.1) give

lim inf
n→∞

√
nadn

2 loga−d
n

‖fn − f̄n‖∞ � lim
ε↘0

lim
n→∞

√
nadn

2 loga−d
n

‖fn − f̄n‖Dε
= lim
ε↘0

‖K‖2‖f ‖1/2
Dε

= ‖K‖2‖f ‖1/2
∞ a.s. (3.7)

For the reverse inequality, we note that, by Propositions 3.1 and 3.2,

lim sup
n→∞

√
nadn

2 loga−d
n

‖fn − f̄n‖∞

� lim
n→∞

√
nadn

2 loga−d
n

‖fn − f̄n‖Dε + lim sup
n→∞

√
nadn

2 loga−d
n

‖fn − f̄n‖Dcε
� ‖K‖2‖f ‖1/2

Dε
+M‖K‖2‖f ‖1/2

Dcε
a.s.

Letting ε↘ 0 and using (3.1) we finally obtain

lim sup
n→∞

√
nadn

2 loga−d
n

‖fn − f̄n‖∞ � ‖K‖2‖f ‖1/2
∞ a.s.,

which, together with (3.7), proves the theorem.✷
Note that the densityf in Theorem 3.3 needs not be strictly positive onRd , not even

on the interior of its support. One might ask whether the limit (3.6) can be improved to

lim
n→∞

√
nadn

2 loga−d
n

∥∥∥∥fn − f̄n√
f

∥∥∥∥∞
= ‖K‖2 a.s. (3.8)

assuming only the hypotheses of Theorem 3.3 and that, in addition,f is strictly
positive on Rd . This is even false for the normal density inR; in fact, if X,Xi ,
i ∈ N, are i.i.d.N(0,1) and e.g.K(0) �= 0 andan = n−α for someα ∈ (0,1), then the
sequence of random variables in (3.8) is not even stochastically bounded. To see this, we
first note that, by Montgomery-Smith’s maximal inequality together with the fact that
supt∈REK((t−X)/an)/

√
f (t)= O(an) (which follows by an easy direct computation),

it suffices to prove that the sequence

{max1�i�n
∥∥K((t−Xi)/an)√

f (t)

∥∥∞√
nan loga−1

n

}

is not stochastically bounded. Then, we observe that

max
1�i�n

∥∥∥∥K((t −Xi)/an)√
f (t)

∥∥∥∥∞
� K(0)√

f (maxi�n |Xi |) .
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Finally, givenM > 0, for all n large enough and for 0< α′ < α < 1, we have

Pr
{

1√
f (maxi�n |Xi |) >

√
Mnan loga−1

n

}
� Pr

{
max
i�n

|Xi |>
√

2(1− α′) logn
}
,

and this last probability tends to 1 because it is larger than 1− (1 − n−(1−α′′))n for
0 < α′′ < α′ and n large enough. Similar estimates show that the sequence in (3.8)
is not stochastically bounded ifX has the symmetric exponential distribution or ifX
has a power type density (f (x) = c/|x|n for large |x|). That is, the lack of stochastic
boundedness of the sequence (3.8) does not depend on the rate at whichf (x) tends to
zero when|x| → ∞. A slight modification of these computations also shows that (3.8)
with

√
f replaced byf β , 0< β � 1/2, does not hold either for 1− 2β < α < 1 in the

normal and exponential cases.
Finally, we consider convergence of moments in Theorem 3.3.

COROLLARY 3.4. –Under the hypotheses of Theorem 2.3, for all λ ∈ R,

sup
n
E exp

{
λ

√
nadn

loga−1
n

‖fn − f̄n‖∞

}
<∞, (3.9)

and, under the hypotheses of Theorem 3.3,

lim
n→∞E exp

{
λ

√
nadn

2 loga−d
n

‖fn − f̄n‖∞

}
= exp

{
λ‖K‖2‖f ‖1/2

∞
}
, (3.10)

for all λ ∈ R; in particular there is convergence of all moments in (3.6), Theorem 3.3.

Proof. – We can apply inequality (2.8) to the class of functions

Fn = {
K

(
(t − ·)/an): t ∈ Rd

}
with U = ‖K‖∞ andσ 2 = adn‖f ‖∞‖K‖2

2 (as in (2.14)), and then, taking the form of the
constant in the exponent of (2.8) into account, integrate with respect toC2 the resulting
bound on the tail probabilities of the random variables in (3.9). This immediately gives
(3.9). Now, (3.10) follows from Theorem 3.3 and the uniform integrability provided by
inequality (3.9). ✷

Remark 3.5. – The continuity condition onf can be somewhat relaxed: the proof of
Theorem 3.3, with only formal modifications (e.g. consider onlyDε in Proposition 3.1
andDcε ∩Bf in Proposition 3.2) yields that, if(K2) and(W2) hold and we assume that
Bf is open, thatf is continuous and bounded onBf and that lim|x|→∞ f (x)= 0, then

lim
n→∞

√
nadn

2| logadn |
sup
t∈Bf

∣∣fn(t)− f̄n(t)∣∣ = ‖K‖2‖f ‖1/2
∞ .

This applies for instance to the exponential distribution.
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Remark 3.6. – One may ask how sharp, up to constants, is the bound (2.2) for the
expected value of the supremum of an empirical process. With the same choices forFn,
U andσ as in the previous proof, this bound gives the following: ifK andf are as in
the first paragraph of the introduction, if

ad/2n �C1 min
(‖f ‖1/2∞ ‖K‖2

‖K‖∞
,

‖K‖∞
‖f ‖1/2∞ ‖K‖2

)
and nadn/ loga−1

n �C2

for some 0< C1< 1 andC2> 0, then there existsC3<∞ depending only onC1, C2,
d, ‖K‖∞, ‖K‖2 and‖f ‖∞, such that

√
nadn

loga−1
n

E‖fn − f̄n‖∞ �C3.

By Corollary 3.4, this is exact up to the value of the constantC3. On the other hand
U. Einmahl and one of us have observed thatAU

σ
in equality (2.2) can be replaced

(twice) by min(AU/σ,n) (twice). This follows from the proof of (2.2) in [7] or from
an inequality in [6].

The moment bounds in Corollary 3.4 and Remark 3.6 apply to minimax risk in density
estimation (Massart [9, p. 395]).
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