@article{AIHPA_1980__32_3_283_0,
author = {Comtet, A.},
title = {Magnetic monopoles in curved spacetimes},
journal = {Annales de l'institut Henri Poincar\'e. Section A, Physique Th\'eorique},
pages = {283--293},
year = {1980},
publisher = {Gauthier-Villars},
volume = {32},
number = {3},
mrnumber = {579965},
language = {en},
url = {https://www.numdam.org/item/AIHPA_1980__32_3_283_0/}
}
TY - JOUR AU - Comtet, A. TI - Magnetic monopoles in curved spacetimes JO - Annales de l'institut Henri Poincaré. Section A, Physique Théorique PY - 1980 SP - 283 EP - 293 VL - 32 IS - 3 PB - Gauthier-Villars UR - https://www.numdam.org/item/AIHPA_1980__32_3_283_0/ LA - en ID - AIHPA_1980__32_3_283_0 ER -
Comtet, A. Magnetic monopoles in curved spacetimes. Annales de l'institut Henri Poincaré. Section A, Physique Théorique, Tome 32 (1980) no. 3, pp. 283-293. https://www.numdam.org/item/AIHPA_1980__32_3_283_0/
[1] , Nucl. Phys., t. B 79, 1974, p. 276. , J. E. T. P. Letters, t. 20, 1974, p. 194. and , Phys. Rev., t. D 11, 1975, p. 2227. and , Phys. Lett., t. 79 B, 1978, p. 297.
and , C. E. R. N., TH 2445, 1978.
[2] , Sov. J. Nucl. Phys., t. 24, 1976, p. 861. | MR
, , and , Phys. Rev., t. D 15, 1977, p. 544.
[3] , Lett. Math. Phys., Vol. 2, n° 1, 1977. | MR
[4] , Harvard University Preprint, 1977.
[5] , and , Gauge field configurations in curved spacetimes. I) Phys. Rev., t. D 20, 1979, p. 1884. II) Phys. Rev., t. D 20, 1979, p. 1898. III) Self-dual SU (2) fields in Eguchi-Hanson space. Phys. Rev., t. D 21, 1980, p. 979. IV) Self-dual SU (2) fields in multicentre space. Phys. Rev., t. D 21, 1980, p. 2280. V) Regularity constraints and quantized actions preprint Ecole Polytechnique. Phys. Rev., t. D 21, 1980, p. 2285. | MR
[6] and , Phys. Rev., t. D 11, 1975, p. 2692. | MR
and , Phys. Rev., t. D 12, 1975, p. 1588. | MR
, and , Phys. Rev., t. D 13, 1976, p. 778.
and , Sur le tenseur d'énergie et le champ gravitationnel du monopole magnétique. Comptes Rendus de l'Académie des Sciences, t. 290, Série A, 1980. p. 85. | Zbl
[7] and , Phys. Rev. Lett., t. 35, 1975, p. 760.
[8] and , Phys. Rev., t. D 16, 1977, p. 1221. , , Ann. Phys., t. 100, 1976, p. 607.
[9] One can easily check that these equations are no longer of the Bogomolny type, as they were in the previous case.
[10] Obviously conformal invariance of the metric does not guarantee that there is a corresponding solution in flat space (actually our lagrangian density is not conformal invariant, an appropriate conformal invariant lagrangian would be obtained by adding a term of the form R/6 Φ2).
[11] , Lectures notes from Jacca Summer School, 1978. , Prog. Th. Phys., Vol. 59, 1978, p. 1781.
, Rediconti Circolo-Mat., Palermo, t. 21, 1906, p. 129. | JFM
[12] and , Physics Reports, Vol. 51, n° 3, 1979. | MR





