Sharp trace asymptotics for a class of 2D-magnetic operators  [ Asymptotiques précisées pour la trace d’une classe d’opérateurs de Schrödinger magnétiques en dimension 2 ]
Annales de l'Institut Fourier, Tome 63 (2013) no. 6, pp. 2457-2513.

Dans cet article, nous démontrons une formule asymptotique à deux termes pour la fonction de comptage spectrale de la réalisation de Dirichlet d’un opérateur de Schrödinger magnétique dans un domaine Ω de 2 , en se plaçant dans la limite semi-classique et champ magnétique fort. Après changement d’échelle, ce problème est équivalent à celui de la limite thermodynamique pour un gaz de Fermi soumis à un champ magnétique extérieur constant. Notre motivation initiale provient d’un article de H. Kunz qui analyse entre autres choses l’influence de la frontière dans l’asymptotique de la pression et de la densité d’un tel gaz. Notre théorème donne une preuve rigoureuse des formules annoncées par Kunz et permet d’obtenir d’autres résultats pour des opérateurs du type (-ih-μA) 2 dans L 2 (Ω) avec des conditions de Dirichlet au bord.

In this paper we prove a two-term asymptotic formula for the spectral counting function for a 2D magnetic Schrödinger operator on a domain (with Dirichlet boundary conditions) in a semiclassical limit and with strong magnetic field. By scaling, this is equivalent to a thermodynamic limit of a 2D Fermi gas submitted to a constant external magnetic field.

The original motivation comes from a paper by H. Kunz in which he studied, among other things, the boundary correction for the grand-canonical pressure and density of such a Fermi gas. Our main theorem yields a rigorous proof of the formulas announced by Kunz. Moreover, the same theorem provides several other results on the integrated density of states for operators of the type (-ih-μA) 2 in L 2 (Ω) with Dirichlet boundary conditions.

DOI : https://doi.org/10.5802/aif.2835
Classification : 35P20,  81V10
Mots clés : Asymptotique semiclassique, asymptotique de Weyl, opérateurs de Schrödinger avec champ magnétique
@article{AIF_2013__63_6_2457_0,
     author = {Cornean, Horia D. and Fournais, S\o ren and Frank, Rupert L. and Helffer, Bernard},
     title = {Sharp trace asymptotics for a class of $2D$-magnetic operators},
     journal = {Annales de l'Institut Fourier},
     pages = {2457--2513},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {63},
     number = {6},
     year = {2013},
     doi = {10.5802/aif.2835},
     mrnumber = {3237453},
     zbl = {1301.35070},
     language = {en},
     url = {www.numdam.org/item/AIF_2013__63_6_2457_0/}
}
Cornean, Horia D.; Fournais, Søren; Frank, Rupert L.; Helffer, Bernard. Sharp trace asymptotics for a class of $2D$-magnetic operators. Annales de l'Institut Fourier, Tome 63 (2013) no. 6, pp. 2457-2513. doi : 10.5802/aif.2835. http://www.numdam.org/item/AIF_2013__63_6_2457_0/

[1] Briet, Philippe; Hislop, Peter D.; Raikov, Georgi; Soccorsi, Eric Mourre estimates for a 2D magnetic quantum Hamiltonian on strip-like domains, Spectral and scattering theory for quantum magnetic systems (Contemp. Math.) Volume 500, Amer. Math. Soc., Providence, RI, 2009, pp. 33-46 | Article | MR 2655141 | Zbl 1183.81063

[2] Briet, Philippe; Raikov, Georgi; Soccorsi, Eric Spectral properties of a magnetic quantum Hamiltonian on a strip, Asymptot. Anal., Volume 58 (2008) no. 3, pp. 127-155 | MR 2456460 | Zbl 1163.35446

[3] Broderix, Kurt; Hundertmark, Dirk; Leschke, Hajo Continuity properties of Schrödinger semigroups with magnetic fields, Rev. Math. Phys., Volume 12 (2000) no. 2, pp. 181-225 | Article | MR 1756112 | Zbl 0961.81006

[4] Combes, J. M.; Thomas, L. Asymptotic behaviour of eigenfunctions for multiparticle Schrödinger operators, Comm. Math. Phys., Volume 34 (1973), pp. 251-270 | Article | MR 391792 | Zbl 0271.35062

[5] Cornean, H. D. On spectral properties of Dirac or Schrödinger operators with magnetic field (1999) (Ph. D. Thesis)

[6] Cornean, H. D.; Nenciu, Gheorghe The Faraday effect revisited: thermodynamic limit, J. Funct. Anal., Volume 257 (2009) no. 7, pp. 2024-2066 | Article | MR 2548029 | Zbl 1178.82077

[7] De Bièvre, Stephan; Pulé, Joseph V. Propagating edge states for a magnetic Hamiltonian, Math. Phys. Electron. J., Volume 5 (1999), pp. Paper 3, 17 pp. (electronic) | MR 1703586 | Zbl 0930.35144

[8] Dimassi, Mouez; Sjöstrand, Johannes Spectral asymptotics in the semi-classical limit, London Mathematical Society Lecture Note Series, Volume 268, Cambridge University Press, Cambridge, 1999, pp. xii+227 | Article | MR 1735654 | Zbl 0926.35002

[9] Erdős, László; Solovej, Jan Philip Semiclassical eigenvalue estimates for the Pauli operator with strong non-homogeneous magnetic fields. II. Leading order asymptotic estimates, Comm. Math. Phys., Volume 188 (1997) no. 3, pp. 599-656 | Article | MR 1473314 | Zbl 0909.47052

[10] Fournais, Søren; Helffer, Bernard Accurate eigenvalue asymptotics for the magnetic Neumann Laplacian, Ann. Inst. Fourier (Grenoble), Volume 56 (2006) no. 1, pp. 1-67 http://aif.cedram.org/item?id=AIF_2006__56_1_1_0 | Article | Numdam | MR 2228679 | Zbl 1097.47020

[11] Fournais, Søren; Helffer, Bernard Spectral methods in surface superconductivity, Progress in Nonlinear Differential Equations and their Applications, 77, Birkhäuser Boston Inc., Boston, MA, 2010, pp. xx+324 | MR 2662319 | Zbl 1256.35001

[12] Fournais, Søren; Kachmar, Ayman On the energy of bound states for magnetic Schrödinger operators, J. Lond. Math. Soc. (2), Volume 80 (2009) no. 1, pp. 233-255 | Article | MR 2520387 | Zbl 1179.35203

[13] Frank, Rupert L. On the asymptotic number of edge states for magnetic Schrödinger operators, Proc. Lond. Math. Soc. (3), Volume 95 (2007) no. 1, pp. 1-19 | Article | MR 2329546 | Zbl 1131.35076

[14] Frank, Rupert L.; Loss, Michael; Weidl, Timo Pólya’s conjecture in the presence of a constant magnetic field, J. Eur. Math. Soc. (JEMS), Volume 11 (2009) no. 6, pp. 1365-1383 | Article | MR 2557138 | Zbl 1179.35205

[15] Ghribi, Fatma Internal Lifshits tails for random magnetic Schrödinger operators, J. Funct. Anal., Volume 248 (2007) no. 2, pp. 387-427 | Article | MR 2335580 | Zbl 1121.82022

[16] Helffer, B.; Sjöstrand, J. On diamagnetism and de Haas-van Alphen effect, Ann. Inst. H. Poincaré Phys. Théor., Volume 52 (1990) no. 4, pp. 303-375 | Numdam | MR 1062904 | Zbl 0715.35070

[17] Helffer, Bernard Semi-classical analysis for the Schrödinger operator and applications, Lecture Notes in Mathematics, Volume 1336, Springer-Verlag, Berlin, 1988, pp. vi+107 | MR 960278 | Zbl 0647.35002

[18] Helffer, Bernard; Mohamed, Abderemane Semiclassical analysis for the ground state energy of a Schrödinger operator with magnetic wells, J. Funct. Anal., Volume 138 (1996) no. 1, pp. 40-81 | Article | MR 1391630 | Zbl 0851.58046

[19] Helffer, Bernard; Morame, Abderemane Magnetic bottles in connection with superconductivity, J. Funct. Anal., Volume 185 (2001) no. 2, pp. 604-680 | Article | MR 1856278 | Zbl 1078.81023

[20] Helffer, Bernard; Robert, D. Calcul fonctionnel par la transformation de Mellin et opérateurs admissibles, J. Funct. Anal., Volume 53 (1983) no. 3, pp. 246-268 | Article | MR 724029 | Zbl 0524.35103

[21] Helffer, Bernard; Sjöstrand, J. Équation de Schrödinger avec champ magnétique et équation de Harper, Schrödinger operators (Sønderborg, 1988) (Lecture Notes in Phys.) Volume 345, Springer, Berlin, 1989, pp. 118-197 | Article | MR 1037319 | Zbl 0699.35189

[22] Hornberger, Klaus; Smilansky, Uzy Magnetic edge states, Phys. Rep., Volume 367 (2002) no. 4, pp. 249-385 | Article | MR 1921565

[23] Hupfer, Thomas; Leschke, Hajo; Müller, Peter; Warzel, Simone Existence and uniqueness of the integrated density of states for Schrödinger operators with magnetic fields and unbounded random potentials, Rev. Math. Phys., Volume 13 (2001) no. 12, pp. 1547-1581 | Article | MR 1869817 | Zbl 1029.81027

[24] Ivriĭ, V. Ja. The second term of the spectral asymptotics for a Laplace-Beltrami operator on manifolds with boundary, Funktsional. Anal. i Prilozhen., Volume 14 (1980) no. 2, pp. 25-34 | Article | MR 575202 | Zbl 0453.35068

[25] Kunz, Hervé Surface orbital magnetism, J. Statist. Phys., Volume 76 (1994) no. 1-2, pp. 183-207 | Article | MR 1297876 | Zbl 1080.82506

[26] Lieb, Elliott H.; Solovej, Jan Philip; Yngvason, Jakob Asymptotics of heavy atoms in high magnetic fields. II. Semiclassical regions, Comm. Math. Phys., Volume 161 (1994) no. 1, pp. 77-124 http://projecteuclid.org/getRecord?id=euclid.cmp/1104269793 | Article | MR 1266071 | Zbl 0807.47058

[27] Persson, Mikael Eigenvalue asymptotics of the even-dimensional exterior Landau-Neumann Hamiltonian, Adv. Math. Phys. (2009), pp. Art. ID 873704, 15 | Article | MR 2500946 | Zbl 1201.81055

[28] Pushnitski, Alexander; Rozenblum, Grigori Eigenvalue clusters of the Landau Hamiltonian in the exterior of a compact domain, Doc. Math., Volume 12 (2007), pp. 569-586 | MR 2377242 | Zbl 1132.35424

[29] Safarov, Yu.; Vassiliev, D. The asymptotic distribution of eigenvalues of partial differential operators, Translations of Mathematical Monographs, Volume 155, American Mathematical Society, Providence, RI, 1997, pp. xiv+354 (Translated from the Russian manuscript by the authors) | MR 1414899 | Zbl 0898.35003

[30] Sobolev, A. V. The quasi-classical asymptotics of local Riesz means for the Schrödinger operator in a strong homogeneous magnetic field, Duke Math. J., Volume 74 (1994) no. 2, pp. 319-429 | Article | MR 1272980 | Zbl 0824.35151

[31] Sobolev, A. V. Quasi-classical asymptotics of local Riesz means for the Schrödinger operator in a moderate magnetic field, Ann. Inst. H. Poincaré Phys. Théor., Volume 62 (1995) no. 4, pp. 325-360 | Numdam | MR 1343781 | Zbl 0843.35024

[32] Sobolev, A. V. Quasi-classical asymptotics for the Pauli operator, Comm. Math. Phys., Volume 194 (1998) no. 1, pp. 109-134 | Article | MR 1628306 | Zbl 0915.47052

[33] Tamura, Hideo Asymptotic distribution of eigenvalues for Schrödinger operators with magnetic fields, Nagoya Math. J., Volume 105 (1987), pp. 49-69 http://projecteuclid.org/getRecord?id=euclid.nmj/1118780638 | MR 881008 | Zbl 0623.35048

[34] Colin de Verdière, Yves L’asymptotique de Weyl pour les bouteilles magnétiques, Comm. Math. Phys., Volume 105 (1986) no. 2, pp. 327-335 http://projecteuclid.org/getRecord?id=euclid.cmp/1104115337 | Article | MR 849211 | Zbl 0612.35102