In this paper we prove a two-term asymptotic formula for the spectral counting function for a D magnetic Schrödinger operator on a domain (with Dirichlet boundary conditions) in a semiclassical limit and with strong magnetic field. By scaling, this is equivalent to a thermodynamic limit of a D Fermi gas submitted to a constant external magnetic field.
The original motivation comes from a paper by H. Kunz in which he studied, among other things, the boundary correction for the grand-canonical pressure and density of such a Fermi gas. Our main theorem yields a rigorous proof of the formulas announced by Kunz. Moreover, the same theorem provides several other results on the integrated density of states for operators of the type in with Dirichlet boundary conditions.
Dans cet article, nous démontrons une formule asymptotique à deux termes pour la fonction de comptage spectrale de la réalisation de Dirichlet d’un opérateur de Schrödinger magnétique dans un domaine de , en se plaçant dans la limite semi-classique et champ magnétique fort. Après changement d’échelle, ce problème est équivalent à celui de la limite thermodynamique pour un gaz de Fermi soumis à un champ magnétique extérieur constant. Notre motivation initiale provient d’un article de H. Kunz qui analyse entre autres choses l’influence de la frontière dans l’asymptotique de la pression et de la densité d’un tel gaz. Notre théorème donne une preuve rigoureuse des formules annoncées par Kunz et permet d’obtenir d’autres résultats pour des opérateurs du type dans avec des conditions de Dirichlet au bord.
Keywords: Semiclassical asymptotics, Weyl law, magnetic Schrödinger operators
Mot clés : Asymptotique semiclassique, asymptotique de Weyl, opérateurs de Schrödinger avec champ magnétique
@article{AIF_2013__63_6_2457_0, author = {Cornean, Horia D. and Fournais, S{\o}ren and Frank, Rupert L. and Helffer, Bernard}, title = {Sharp trace asymptotics for a class of $2D$-magnetic operators}, journal = {Annales de l'Institut Fourier}, pages = {2457--2513}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {63}, number = {6}, year = {2013}, doi = {10.5802/aif.2835}, zbl = {1301.35070}, mrnumber = {3237453}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2835/} }
TY - JOUR AU - Cornean, Horia D. AU - Fournais, Søren AU - Frank, Rupert L. AU - Helffer, Bernard TI - Sharp trace asymptotics for a class of $2D$-magnetic operators JO - Annales de l'Institut Fourier PY - 2013 SP - 2457 EP - 2513 VL - 63 IS - 6 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2835/ DO - 10.5802/aif.2835 LA - en ID - AIF_2013__63_6_2457_0 ER -
%0 Journal Article %A Cornean, Horia D. %A Fournais, Søren %A Frank, Rupert L. %A Helffer, Bernard %T Sharp trace asymptotics for a class of $2D$-magnetic operators %J Annales de l'Institut Fourier %D 2013 %P 2457-2513 %V 63 %N 6 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2835/ %R 10.5802/aif.2835 %G en %F AIF_2013__63_6_2457_0
Cornean, Horia D.; Fournais, Søren; Frank, Rupert L.; Helffer, Bernard. Sharp trace asymptotics for a class of $2D$-magnetic operators. Annales de l'Institut Fourier, Volume 63 (2013) no. 6, pp. 2457-2513. doi : 10.5802/aif.2835. http://www.numdam.org/articles/10.5802/aif.2835/
[1] Mourre estimates for a 2D magnetic quantum Hamiltonian on strip-like domains, Spectral and scattering theory for quantum magnetic systems (Contemp. Math.), Volume 500, Amer. Math. Soc., Providence, RI, 2009, pp. 33-46 | DOI | MR | Zbl
[2] Spectral properties of a magnetic quantum Hamiltonian on a strip, Asymptot. Anal., Volume 58 (2008) no. 3, pp. 127-155 | MR | Zbl
[3] Continuity properties of Schrödinger semigroups with magnetic fields, Rev. Math. Phys., Volume 12 (2000) no. 2, pp. 181-225 | DOI | MR | Zbl
[4] Asymptotic behaviour of eigenfunctions for multiparticle Schrödinger operators, Comm. Math. Phys., Volume 34 (1973), pp. 251-270 | DOI | MR | Zbl
[5] On spectral properties of Dirac or Schrödinger operators with magnetic field, Bucarest (1999) (Ph. D. Thesis)
[6] The Faraday effect revisited: thermodynamic limit, J. Funct. Anal., Volume 257 (2009) no. 7, pp. 2024-2066 | DOI | MR | Zbl
[7] Propagating edge states for a magnetic Hamiltonian, Math. Phys. Electron. J., Volume 5 (1999), pp. Paper 3, 17 pp. (electronic) | MR | Zbl
[8] Spectral asymptotics in the semi-classical limit, London Mathematical Society Lecture Note Series, 268, Cambridge University Press, Cambridge, 1999, pp. xii+227 | DOI | MR | Zbl
[9] Semiclassical eigenvalue estimates for the Pauli operator with strong non-homogeneous magnetic fields. II. Leading order asymptotic estimates, Comm. Math. Phys., Volume 188 (1997) no. 3, pp. 599-656 | DOI | MR | Zbl
[10] Accurate eigenvalue asymptotics for the magnetic Neumann Laplacian, Ann. Inst. Fourier (Grenoble), Volume 56 (2006) no. 1, pp. 1-67 | DOI | Numdam | MR | Zbl
[11] Spectral methods in surface superconductivity, Progress in Nonlinear Differential Equations and their Applications, 77, Birkhäuser Boston Inc., Boston, MA, 2010, pp. xx+324 | MR | Zbl
[12] On the energy of bound states for magnetic Schrödinger operators, J. Lond. Math. Soc. (2), Volume 80 (2009) no. 1, pp. 233-255 | DOI | MR | Zbl
[13] On the asymptotic number of edge states for magnetic Schrödinger operators, Proc. Lond. Math. Soc. (3), Volume 95 (2007) no. 1, pp. 1-19 | DOI | MR | Zbl
[14] Pólya’s conjecture in the presence of a constant magnetic field, J. Eur. Math. Soc. (JEMS), Volume 11 (2009) no. 6, pp. 1365-1383 | DOI | MR | Zbl
[15] Internal Lifshits tails for random magnetic Schrödinger operators, J. Funct. Anal., Volume 248 (2007) no. 2, pp. 387-427 | DOI | MR | Zbl
[16] On diamagnetism and de Haas-van Alphen effect, Ann. Inst. H. Poincaré Phys. Théor., Volume 52 (1990) no. 4, pp. 303-375 | Numdam | MR | Zbl
[17] Semi-classical analysis for the Schrödinger operator and applications, Lecture Notes in Mathematics, 1336, Springer-Verlag, Berlin, 1988, pp. vi+107 | MR | Zbl
[18] Semiclassical analysis for the ground state energy of a Schrödinger operator with magnetic wells, J. Funct. Anal., Volume 138 (1996) no. 1, pp. 40-81 | DOI | MR | Zbl
[19] Magnetic bottles in connection with superconductivity, J. Funct. Anal., Volume 185 (2001) no. 2, pp. 604-680 | DOI | MR | Zbl
[20] Calcul fonctionnel par la transformation de Mellin et opérateurs admissibles, J. Funct. Anal., Volume 53 (1983) no. 3, pp. 246-268 | DOI | MR | Zbl
[21] Équation de Schrödinger avec champ magnétique et équation de Harper, Schrödinger operators (Sønderborg, 1988) (Lecture Notes in Phys.), Volume 345, Springer, Berlin, 1989, pp. 118-197 | DOI | MR | Zbl
[22] Magnetic edge states, Phys. Rep., Volume 367 (2002) no. 4, pp. 249-385 | DOI | MR
[23] Existence and uniqueness of the integrated density of states for Schrödinger operators with magnetic fields and unbounded random potentials, Rev. Math. Phys., Volume 13 (2001) no. 12, pp. 1547-1581 | DOI | MR | Zbl
[24] The second term of the spectral asymptotics for a Laplace-Beltrami operator on manifolds with boundary, Funktsional. Anal. i Prilozhen., Volume 14 (1980) no. 2, pp. 25-34 | DOI | MR | Zbl
[25] Surface orbital magnetism, J. Statist. Phys., Volume 76 (1994) no. 1-2, pp. 183-207 | DOI | MR | Zbl
[26] Asymptotics of heavy atoms in high magnetic fields. II. Semiclassical regions, Comm. Math. Phys., Volume 161 (1994) no. 1, pp. 77-124 http://projecteuclid.org/getRecord?id=euclid.cmp/1104269793 | DOI | MR | Zbl
[27] Eigenvalue asymptotics of the even-dimensional exterior Landau-Neumann Hamiltonian, Adv. Math. Phys. (2009), pp. Art. ID 873704, 15 | DOI | MR | Zbl
[28] Eigenvalue clusters of the Landau Hamiltonian in the exterior of a compact domain, Doc. Math., Volume 12 (2007), pp. 569-586 | MR | Zbl
[29] The asymptotic distribution of eigenvalues of partial differential operators, Translations of Mathematical Monographs, 155, American Mathematical Society, Providence, RI, 1997, pp. xiv+354 (Translated from the Russian manuscript by the authors) | MR | Zbl
[30] The quasi-classical asymptotics of local Riesz means for the Schrödinger operator in a strong homogeneous magnetic field, Duke Math. J., Volume 74 (1994) no. 2, pp. 319-429 | DOI | MR | Zbl
[31] Quasi-classical asymptotics of local Riesz means for the Schrödinger operator in a moderate magnetic field, Ann. Inst. H. Poincaré Phys. Théor., Volume 62 (1995) no. 4, pp. 325-360 | Numdam | MR | Zbl
[32] Quasi-classical asymptotics for the Pauli operator, Comm. Math. Phys., Volume 194 (1998) no. 1, pp. 109-134 | DOI | MR | Zbl
[33] Asymptotic distribution of eigenvalues for Schrödinger operators with magnetic fields, Nagoya Math. J., Volume 105 (1987), pp. 49-69 http://projecteuclid.org/getRecord?id=euclid.nmj/1118780638 | MR | Zbl
[34] L’asymptotique de Weyl pour les bouteilles magnétiques, Comm. Math. Phys., Volume 105 (1986) no. 2, pp. 327-335 http://projecteuclid.org/getRecord?id=euclid.cmp/1104115337 | DOI | MR | Zbl
Cited by Sources: