Fournais, Soeren; Helffer, Bernard
Accurate eigenvalue asymptotics for the magnetic Neumann Laplacian  [ Estimations asymptotiques précises pour le laplacien magnétique de Neumann ]
Annales de l'institut Fourier, Tome 56 (2006) no. 1 , p. 1-67
MR 2228679 | Zbl 1097.47020 | 5 citations dans Numdam
doi : 10.5802/aif.2171
URL stable : http://www.numdam.org/item?id=AIF_2006__56_1_1_0

Classification:  47A75,  58C40,  35Q40,  81Q20
Mots clés: analyse semi-classique, supraconductivité, laplacien de Neumann, laplacien magnétique
Motivés par la théorie de la supraconductivité et plus précisément par le problème de l’apparition de la supraconductivité à la surface, de nombreux articles ont été consacrés récemment à l’analyse semi-classique de la plus petite valeur propre de l’opérateur de Schrödinger avec champ magnétique (Bernoff-Sternberg, Lu-Pan, Del Pino-Felmer-Sternberg, Helffer-Morame et aussi Bauman-Phillips-Tang pour le cas du disque). Dans cet article, nous proposons des asymptotiques complètes pour les premières valeurs propres dans le cas d’un domaine de 2 dont la courbure du bord n’a qu’un unique maximum non-dégénéré.
Motivated by the theory of superconductivity and more precisely by the problem of the onset of superconductivity in dimension two, many papers devoted to the analysis in a semi-classical regime of the lowest eigenvalue of the Schrödinger operator with magnetic field have appeared recently. Here we would like to mention the works by Bernoff-Sternberg, Lu-Pan, Del Pino-Felmer-Sternberg and Helffer-Morame and also Bauman-Phillips-Tang for the case of a disc. In the present paper we settle one important part of this question completely by proving an asymptotic expansion to all orders for low-lying eigenvalues for generic domains. The word ‘generic’ means in this context that the curvature of the boundary of the domain has a unique non-degenerate maximum.

Bibliographie

[1] Agmon, S. Lectures on exponential decay of solutions of second order elliptic equations, Princeton University Press, Math. Notes, 29 (1982) MR 745286 | Zbl 0503.35001

[2] Bauman, P.; Phillips, D.; Tang, Q. Stable nucleation for the Ginzburg-Landau system with an applied magnetic field, Arch. Rational Mech. Anal., 142 (1998), p. 1-43 Article  MR 1629119 | Zbl 0922.35157

[3] Bernoff, A.; Sternberg, P. Onset of superconductivity in decreasing fields for general domains, J. Math. Phys., 39 (1998), p. 1272-1284 Article  MR 1608449 | Zbl 1056.82523

[4] Bolley, C.; Helffer, B. An application of semi-classical analysis to the asymptotic study of the supercooling field of a superconducting material, Ann. Inst. H. Poincaré (Section Physique Théorique), 58 (1993) no. 2, p. 169-233 Numdam | MR 1217119 | Zbl 0779.35104

[5] Bonnaillie, V. Analyse mathématique de la supraconductivité dans un domaine à coins : méthodes semi-classiques et numériques, Université Paris 11 (2003) (Ph. D. Thesis)

[6] Bonnaillie, V. On the fundamental state for a Schrödinger operator with magnetic fields in domains with corners, Asymptotic Anal., 41 (2005) no. 3-4, p. 215-258 MR 2127997 | Zbl 1067.35054

[7] Bonnaillie-Noël, V.; Dauge, M. Asymptotics for the low-lying eigenstates of the Schrödinger operator with magnetic field near corners (2005) (preprint)

[8] Cycon, H.L.; Froese, R.G.; Kirsch, W.; Simon, B. Schrödinger Operators, Springer Verlag, Berlin (1987) Zbl 0619.47005

[9] Dauge, M.; Helffer, B. Eigenvalues variation I, Neumann problem for Sturm-Liouville operators, J. Differential Equations, 104 (1993) no. 2, p. 243-262 Article  MR 1231468 | Zbl 0784.34021

[10] Dimassi, M.; Sjöstrand, J. Spectral Asymptotics in the semi-classical limit, Cambridge University Press, London Mathematical Society Lecture Note Series, 268 (1999) MR 1735654 | Zbl 0926.35002

[11] Fournais, S.; Helffer, B. Energy asymptotics for type II superconductors (2004) (preprint) MR 2174430 | Zbl 02227540

[12] Grušhin, V. V. Hypoelliptic differential equations and pseudodifferential operators with operator-valued symbols, Mat. Sb. (N.S.), 88 (1972) no. 130, p. 504-521 ((russian)) Zbl 0255.35022

[13] Helffer, B. Introduction to the semiclassical analysis for the Schrödinger operator and applications, Springer Verlag, Lecture Notes in Math., 1336 (1988) Zbl 0647.35002

[14] Helffer, B.; Mohamed, A. Semiclassical analysis for the ground state energy of a Schrödinger operator with magnetic wells, J. Funct. Anal., 138 (1996) no. 1, p. 40-81 Article  MR 1391630 | Zbl 0851.58046

[15] Helffer, B.; Morame, A. Magnetic bottles in connection with superconductivity, J. Funct. Anal., 185 (2001) no. 2, p. 604-680 Article  MR 1856278 | Zbl 01688735

[16] Helffer, B.; Morame, A. Magnetic bottles for the Neumann problem : curvature effect in the case of dimension 3 (General case), Ann. Sci. École Norm. Sup., 37 (2004), p. 105-170 Numdam | MR 2050207 | Zbl 1057.35061

[17] Helffer, B.; Pan, X. Upper critical field and location of surface nucleation of superconductivity, Ann. Inst. H. Poincaré (Section Analyse non linéaire), 20 (2003) no. 1, p. 145-181 Article  Numdam | MR 1958165 | Zbl 1060.35132

[18] Helffer, B.; Sjöstrand, J. Multiple wells in the semiclassical limit I, Comm. Partial Differential Equations, 9 (1984) no. 4, p. 337-408 Article  MR 740094 | Zbl 0546.35053

[19] Helffer, B.; Sjöstrand, J. Puits multiples en limite semi-classique II – Interaction moléculaire – Symétries – Perturbations, Ann. Inst. H. Poincaré (Section Physique théorique), 42 (1985) no. 2, p. 127-212 Numdam | MR 798695 | Zbl 0595.35031

[20] Helffer, B.; Sjöstrand, J. Puits multiples en limite semiclassique V – le cas des minipuits, Current topics in partial differential equations, Kinokuniya, Tokyo (1986), p. 133-186 Zbl 0628.35024

[21] Helffer, B.; Sjöstrand, J. Effet tunnel pour l’équation de Schrödinger avec champ magnétique, Ann. Scuola Norm. Sup. Pisa, 14 (1987) no. 4, p. 625-657 Numdam | MR 963493 | Zbl 0699.35205

[22] Lu, K.; Pan, X-B. Eigenvalue problems of Ginzburg-Landau operator in bounded domains, J. Math. Phys., 40 (1999) no. 6, p. 2647-2670 Article  MR 1694223 | Zbl 0943.35058

[23] Lu, K.; Pan, X-B. Estimates of the upper critical field for the equations of superconductivity, Physica D, 127 (1999), p. 73-104 Article  MR 1678383 | Zbl 0934.35174

[24] Lu, K.; Pan, X-B. Gauge invariant eigenvalue problems on 2 and + 2 , Trans. Amer. Math. Soc., 352 (2000) no. 3, p. 1247-1276 Article  MR 1675206 | Zbl 1053.35124

[25] Lu, K.; Pan, X-B. Surface nucleation of superconductivity in 3-dimension, J. of Differential Equations, 168 (2000) no. 2, p. 386-452 Article  MR 1808455 | Zbl 0972.35152

[26] Pino, M. Del; Felmer, P.L.; Sternberg, P. Boundary concentration for eigenvalue problems related to the onset of superconductivity, Comm. Math. Phys., 210 (2000), p. 413-446 Article  MR 1776839 | Zbl 0982.35077

[27] Reed, M.; Simon, B. Methods of modern Mathematical Physics, IV: Analysis of operators, Academic Press, New York (1978) MR 493421 | Zbl 0401.47001

[28] Robert, D. Autour de l’approximation semi-classique, Birkhäuser, Boston (1987) MR 897108 | Zbl 0621.35001

[29] Saint-James, D.; Sarma, G.; Thomas, E.J. Type II Superconductivity, Pergamon, Oxford (1969)

[30] Simon, B. Semi-classical analysis of low lying eigenvalues I, Ann. Inst. H. Poincaré (Section Physique Théorique), 38 (1983) no. 4, p. 295-307 Numdam | MR 708966 | Zbl 0526.35027

[31] Sjöstrand, J. Operators of principal type with interior boundary conditions, Acta Math., 130 (1973), p. 1-51 Article  MR 436226 | Zbl 0253.35076

[32] Sternberg, P.; Berger, J.; Rubinstein, J. On the Normal/Superconducting Phase Transition in the Presence of Large Magnetic Fields, Connectivity and Superconductivity, Springer Verlag (Lect. Notes in Physics) M 62 (2000), p. 188-199 Zbl 0976.82056

[33] Tilley, D.R.; Tilley, J. Superfluidity and superconductivity, Institute of Physics Publishing, Bristol and Philadelphia (1990)

[34] Tinkham, M. Introduction to Superconductivity, McGraw-Hill Inc, New York (1975)