Exponential-type Nagumo norms and summability of formal solutions of singular partial differential equations
Annales de l'Institut Fourier, Volume 62 (2012) no. 2, p. 571-618

In this paper, we study a class of first order nonlinear degenerate partial differential equations with singularity at (t,x)=(0,0)C 2 . Using exponential-type Nagumo norm approach, the Gevrey asymptotic analysis is extended to case of holomorphic parameters in a natural way. A sharp condition is then established to deduce the k-summability of the formal solutions. Furthermore, analytical solutions in conical domains are found for each type of these nonlinear singular PDEs.

Dans cet article, nous étudions une classe d’équations aux dérivées partielles du premier ordre, non linéaires, dégénérées et ayant une singularité en (t,x)=(0,0)C 2 . Au moyen d’une famille de normes de Nagumo de type exponentiel, l’analyse asymptotique Gevrey s’étend naturellement au cas de paramètres holomorphes. Une condition optimale est ainsi établie pour déduire la k-sommabilité des solutions formelles. En outre, des solutions analytiques dans des domaines coniques sont obtenues pour chaque type de ces PDE singulières non linéaires.

DOI : https://doi.org/10.5802/aif.2688
Classification:  30E15,  32D15,  35C10,  35C20
Keywords: Nagumo norm, singular differential equations, Fuchsian singularity, Borel summability, Stokes phenomenon, k-summability, holomorphic parameters.
@article{AIF_2012__62_2_571_0,
     author = {Luo, Zhuangchu and Chen, Hua and Zhang, Changgui},
     title = {Exponential-type Nagumo norms and summability of formal solutions of singular partial differential equations},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {62},
     number = {2},
     year = {2012},
     pages = {571-618},
     doi = {10.5802/aif.2688},
     mrnumber = {2985510},
     zbl = {1252.30025},
     language = {en},
     url = {http://www.numdam.org/item/AIF_2012__62_2_571_0}
}
Luo, Zhuangchu; Chen, Hua; Zhang, Changgui. Exponential-type Nagumo norms and summability of formal solutions of singular partial differential equations. Annales de l'Institut Fourier, Volume 62 (2012) no. 2, pp. 571-618. doi : 10.5802/aif.2688. http://www.numdam.org/item/AIF_2012__62_2_571_0/

[1] Balser, W. Formal power series and linear systems of meromorphic ordinary differential equations, Springer-Verlag, New York, Universitext XVIII (2000) | MR 1722871

[2] Balser, W. Multisummability of formal power series solutions of partial differential equations with constant coefficients, J. Differential Equations, Tome 201 (2004), pp. 63-74 | Article | MR 2057538

[3] Braaksma, B. L. J. Multisummability of formal power series solutions of nonlinear meromorphic differential equations, Ann. Inst. Fourier, Tome 42 (1992), pp. 517-540 | Article | Numdam | MR 1182640 | Zbl 0759.34003

[4] Canalis-Durand, M.; Ramis, J.-P.; Schäfke, R.; Sibuya, Y. Gevrey solutions of singularly perturbed differential equations, J. Reine Angew. Math., Tome 518 (2000), pp. 95-129 | Article | MR 1739408

[5] Chen, H.; Luo, Z. On the holomorphic solution of non-linear totally characteristic equations with several space variables, Acta Mathematica Scientia, Tome 22B (2002), pp. 393-403 | MR 1921319

[6] Chen, H.; Luo, Z.; Tahara, H. Formal solution of nonlinear first order totally characteristic type PDE with irregular singularity, Ann. Inst. Fourier, Tome 51 (2001), pp. 1599-1620 | Article | Numdam | MR 1871282

[7] Chen, H.; Luo, Z.; Zhang, C. On the summability of formal solutions for a class of nonlinear singular PDEs with irregular singularity, Contemporary of Mathematics, Amer. Math. Soc., Tome 400 (2006), pp. 53-64 | MR 2222465

[8] Chen, H.; Tahara, H. On totally characteristic type non-linear differential equations in the Complex Domain, Publ. RIMS, Kyoto Univ., Tome 35 (1999), pp. 621-636 | Article | MR 1719863 | Zbl 0961.35002

[9] Chen, H.; Tahara, H. On the holomorphic solution of non-linear totally characteristic equations, Mathematische Nachrichten, Tome 219 (2000), pp. 85-96 | Article | MR 1791913

[10] Costin, O.; Tanveer, S. Existence and uniqueness for a class of nonlinear higher-order partial differential equations in the complex plane, Comm. Pure and Appl. Math., Tome LIII (2000), pp. 0001-0026 | MR 1761410

[11] Di Vizio, L. An ultrametric version of the Maillet-Malgrange theorem for non linear q-difference equations, Proc. Amer. Math. Soc., Tome 136 (2008), pp. 2803-2814 | Article | MR 2399044

[12] Fife, P.C.; Mcleod, J.B. The approach of solutions of nonlinear diffusion equations to travelling front solutions, Arch. Ration. Mech. Anal., Tome 65 (1977), pp. 335-361 | Article | MR 442480 | Zbl 0361.35035

[13] Gérard, R.; Tahara, H. Singular nonlinear partial differential equations, Vieweg Verlag, Aspects of Mathematics, E 28 (1996) | MR 1757086 | Zbl 0874.35001

[14] Gevrey, M. Sur les équations aux dérivées partielles du type parabolique, J. de Mathématique, Tome 9 (1913), pp. 305-476

[15] Hagan, P. S.; Ockendon, J. R. Half-range analysis of a counter-current separator, J. Math. Anal. Appl., Tome 160 (1991), pp. 358-378 | Article | MR 1126123 | Zbl 0753.76190

[16] Hibino, M. Borel summability of divergent solutions for singular first order linear partial differential equations with polynomial coefficients, J. Math. Sci. Univ. Tokyo, Tome 10 (2003), pp. 279-309 | MR 1987134

[17] Hibino, M. Borel summability of divergence solutions for singular first-order partial differential equations with variable coefficients. I, J. Differential Equations, Tome 227 (2006), pp. 499-533 | Article | MR 2237677

[18] Hibino, M. Borel summability of divergent solutions for singular first-order partial differential equations with variable coefficients. II, J. Differential Equations, Tome 227 (2006), pp. 534-563 | Article | MR 2237678

[19] Hörmander, L. An introduction to complex analysis in several variables, North-Holland Publishing Co., Amsterdam, North-Holland Mathematical Library, 7. (1990) | MR 1045639 | Zbl 0271.32001

[20] Luo, Z.; Chen, H.; Zhang, C. On the summability of the formal solutions for some PDEs with irregular singularity, C.R. Acad. Sci. Paris, Tome Sér. I, 336 (2003), pp. 219-224 | Article | MR 1968262

[21] Luo, Z.; Zhang, C. On the Borel summability of divergent power series respective to two variables (Preprint, 2010)

[22] Lutz, D. A.; Miyake, M.; Schäfke, R. On the Borel summability of divergent solutions of the heat equation, Nagoya Math. J., Tome 154 (1999), pp. 1-29 | MR 1689170 | Zbl 0958.35061

[23] Malgrange, B. Sur le théorème de Maillet, Asymptot. Anal., Tome 2 (1989), pp. 1-4 | MR 991413 | Zbl 0693.34004

[24] Martinet, J.; Ramis, J.-P. Problèmes de modules pour des équations différentielles non linéaires du premier ordre, Publ. Math., Inst. Hautes Études Sci., Tome 55 (1982), pp. 63-164 | Article | Numdam | MR 672182 | Zbl 0546.58038

[25] Martinet, J.; Ramis, J.-P. Elementary acceleration and multisummability I, Annales de l’I.H.P. Physique théorique, Tome 54 (1991), pp. 331-401 | Numdam | MR 1128863 | Zbl 0748.12005

[26] Nagumo, M. Über das Anfangswertproblem partieller Differentialgleichungen, Jap. J. Math., Tome 18 (1942), pp. 41-47 | MR 15186 | Zbl 0061.21107

[27] Ouchi, S. Multisummability of formal solutions of some linear partial differential equations, J. Differential Equations, Tome 185 (2002), pp. 513-549 | Article | MR 1935612

[28] Ouchi, S. Borel summability of formal solutions of some first order singular partial differential equations and normal forms of vector fields, J. Math. Soc. Japan, Tome 57 (2005), pp. 415-460 | Article | MR 2123239

[29] Ouchi, S. Multisummability of formal power series solutions of nonlinear partial differential equations in complex domains, Asymptot. Anal., Tome 47 (2006), pp. 187-225 | MR 2233920

[30] Pagani, C. D.; Talenti, G. On a forward-backward parabolic equation, Ann. Mat. Pura. Appl., Tome 90 (1971), pp. 1-57 | Article | MR 313635 | Zbl 0238.35043

[31] Ramis, J.-P. Les séries k-sommables et leurs applications, Complex Analysis, Microlocal Calculus and Relativistic Quantum Theory, Springer-Verlag, New York (Lecture Notes in Physics) Tome 126 (1980), pp. 178-199 | MR 579749

[32] Tougeron, J.-C. Sur les ensembles semi-analytiques avec conditions Gevrey au bord, Ann. Sci. École Norm. Sup., Tome 27 (1994), pp. 173-208 | Numdam | MR 1266469 | Zbl 0803.32003

[33] Zhang, C. Sur un théorème du type de Maillet-Malgrange pour les équations q-différences-différentielles, Asymptot. Anal., Tome 17 (1998), pp. 309-314 | MR 1656811 | Zbl 0938.34064