Perturbative expansions in quantum mechanics  [ Séries perturbatives en mécanique quantique ]
Annales de l'Institut Fourier, Tome 59 (2009) no. 5, p. 2061-2101
Nous démontrons un théorème de déformation verselle analytique pour l’algèbre de Heisenberg dans le cas D=1. Nous définissons le spectre d’un élément dans cette algèbre. La quantification du lemme de Morse montre que les séries perturbatives du spectre de l’oscillateur harmonique deviennent analytique après une transformation de Borel formelle.
We prove a D=1 analytic versal deformation theorem in the Heisenberg algebra. We define the spectrum of an element in the Heisenberg algebra. The quantised version of the Morse lemma already shows that the perturbation series arising in a perturbed harmonic oscillator become analytic after a formal Borel transform.
DOI : https://doi.org/10.5802/aif.2483
Classification:  81Q15
Mots clés: oscillateur harmonique, sommabilité de Borel, analyse semi-classique, formes normales
@article{AIF_2009__59_5_2061_0,
     author = {Garay, Mauricio D.},
     title = {Perturbative expansions in  quantum mechanics},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {59},
     number = {5},
     year = {2009},
     pages = {2061-2101},
     doi = {10.5802/aif.2483},
     mrnumber = {2573197},
     zbl = {pre05641408},
     language = {en},
     url = {http://www.numdam.org/item/AIF_2009__59_5_2061_0}
}
Garay, Mauricio D. Perturbative expansions in  quantum mechanics. Annales de l'Institut Fourier, Tome 59 (2009) no. 5, pp. 2061-2101. doi : 10.5802/aif.2483. http://www.numdam.org/item/AIF_2009__59_5_2061_0/

[1] Arnold, V. I.; Varchenko, A. N.; Goussein-Zade, S. Singularity of differentiable mapping, vol. I (Nauka:Moscow, 1982, English transl.: Birkhauser, 382p., Basel (1986))

[2] Arnold, V. I.; Varchenko, A. N.; Goussein-Zade, S. Singularity of differentiable mapping, vol. II (Nauka:Moscow, 1982, English transl.: Birkhauser, 382p., Basel(1986))

[3] Birkhoff, G. D. Dynamical systems, American Mathematical Society, Providence R.I., Colloquium Publications, Tome IX (1927) | MR 209095

[4] Born, M.; Heisenberg, W.; Jordan, P. Zur Quantenmechaniks II, Z. Phys., Tome 35 (1926), pp. 557-615 | Article

[5] Born, M.; Jordan, P. Zur Quantenmechaniks, Zeit.für Phys., Tome 34 (1925), pp. 858-888 | Article

[6] Bourbaki, N. Espaces vectoriels topologiques, Hermann (1966)

[7] Brieskorn, E. Die Monodromie der isolierten Singularitäten von Hyperflächen, Manuscr. Math., Tome 2 (1970), pp. 103-161 | Article | MR 267607 | Zbl 0186.26101

[8] Colin De Verdière, Y. Singular lagrangian manifolds and semi-classical analysis, Duke Math. Journal, Tome 116 (2003) no. 2, pp. 263-298 | Article | MR 1953293 | Zbl 1074.53066

[9] Colin De Verdière, Y.; Parisse, B. Equilibres instables en régime semi-classique I: concentration micro-locale, Comm. PDE, Tome 19 (1994), pp. 1535-1564 | Article | MR 1294470 | Zbl 0819.35116

[10] Deligne, P. Déformations de l’algèbre des fonctions d’une variété symplectique: comparaison entre Fedosov et De Wilde, Lecomte, Selecta Math. (N.S.), Tome 1 (1995) no. 4, pp. 667-697 | Article | MR 1383583 | Zbl 0852.58033

[11] Dieudonné, J.; Schwartz, L. La dualité dans les espaces () et (), Annales de l’Institut Fourier, Tome 1 (1949), pp. 61-101 | Article | Numdam | Zbl 0035.35501

[12] Dirac, P. A. M. The fundamental equations of quantum mechanics, Proc. Roy. Soc. A, Tome 109 (1926), pp. 642-653

[13] Eisenbud, D. Commutative algebra with a view towards algebraic geometry, Springer (1999) (797 pp.) | MR 1322960 | Zbl 0819.13001

[14] Garay, M. D. Finiteness and constructibility in local analytic geometry (math.AG/0610409, To appear in L’Enseignement Mathématique)

[15] Garay, M. D. An isochore versal deformation theorem, Topology, Tome 43 (2004) no. 5, pp. 1081-1088 | Article | MR 2079995 | Zbl 1100.32010

[16] Garay, M. D. Analytic quantum mechanics (2005) (math-ph/0502027)

[17] Garay, M. D. Analytic geometry and semi-classical analysis, Proceedings of the Steklov Insitute of Mathematics, Tome 259 (2007), pp. 35-59 | Article | MR 2433676 | Zbl 1161.58013

[18] Grothendieck, A. Topological vector spaces (Gordon and Breach, 1973, 245 p., English Translation: Espaces vectoriels topologiques, São Paulo 1954) | Zbl 0763.46002

[19] Grothendieck, A. Résumé des résultats essentiels dans la théorie des produits tensoriels topologiques et des espaces nucléaires, Annales de l’Institut Fourier (1952), pp. 73-112 | Article | Numdam | MR 61754 | Zbl 0055.09705

[20] Heisenberg, W. Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen, Zeitschrift für Physik, Tome 33 (1925), pp. 879-893 | Article

[21] Helffer, B.; Sjöstrand, J. Semiclassical analysis for Harper’s equation. III. Cantor structure of the spectrum, Mémoire de la Société Mathématique de France, Tome 39 (1989), pp. 1-124 | Numdam | MR 1041490 | Zbl 0725.34099

[22] Houzel, C. Espaces analytiques relatifs et théorème de finitude, Math. Annalen, Tome 205 (1973), pp. 13-54 | Article | MR 393552 | Zbl 0264.32012

[23] Kiehl, R.; Verdier, J. L. Ein Einfacher Beweis des Kohärenzsatzes von Grauert, Math. Annalen, Tome 195 (1971), pp. 24-50 | Article | MR 306555 | Zbl 0223.32010

[24] Looijenga, E. J. N.; Press, Cambridge University Isolated singular points on complete intersections, Lect. Notes Series, London Math. Society (1984) no. 77, pp. 200 pp. | MR 747303 | Zbl 0552.14002

[25] Malgrange, B. Intégrales asymptotiques et monodromie, Ann. Scient. École Norm. Sup., Tome 7 (1974) no. 4, pp. 405-430 | Numdam | MR 372243 | Zbl 0305.32008

[26] Malgrange, B. Sommation des séries divergentes, Expositiones Mathematicae, Tome 13 (1995) no. 2/3, pp. 163-222 | MR 1346201 | Zbl 0836.40004

[27] Martinet, J. Singularities of smooth functions and maps, Lecture Notes Series, Cambridge University Press, Tome 58 (1982), pp. 272 pp. | MR 671585 | Zbl 0522.58006

[28] Mather, J. Stratifications and mappings (Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 1971), Academic Press, 1973, pp. 195–232) | Zbl 0253.58005

[29] Moyal, J. E. Quantum mechanics as a statistical theory, Proc. Cambridge Philos. Soc., Tome 45 (1949), pp. 99-124 | Article | MR 29330 | Zbl 0031.33601

[30] Pham, F. Multiple turning points in exact WKB analysis (variations on a theme of Stokes) (Towards the exact WKB analysis of differential equations, linear or non linear (C. Howls, T. Kawai, and Y. Takei, eds.), Kyoto University Press, 2000, pp. 71–85) | Zbl 1017.34091

[31] Pham, F. Resurgence, quantized canonical transformations, and multi-instanton expansions (Algebraic analysis (M. Kashiwara and T. Kawai, eds.), vol. II, Academic Press, Boston, MA, 1988, Papers dedicated to Professor Mikio Sato on the occasion of his sixtieth birthday, pp. 699–726) | Zbl 0686.58032

[32] Polesello, P.; Schapira, P. Stacks of quantization-deformation modules on complex symplectic manifolds, Int. Math. Research Notices, Tome 49 (2004), pp. 2637-2664 | Article | MR 2077680 | Zbl 1086.53107

[33] Reed, M.; Simon, B. Methods of modern mathematical physics, vol. IV, Academic Press (1978) | MR 493422 | Zbl 0401.47001

[34] Simon, B. Borel summability of the ground state energy in spatially cutoff (ϕ 4 ) 2 , Physical Review letters, Tome 25 (1970) no. 22, pp. 1583-1586 | Article | MR 395601

[35] Simon, B. Determination of eigenvalues by divergent perturbation series, Advances in Mathematics, Tome 7 (1971), pp. 240-253 | Article | MR 300138 | Zbl 0244.47008

[36] Sjöstrand, J. Singularités analytiques microlocales, Astérisque, Tome 95 (1982), pp. 1-166 | MR 699623 | Zbl 0524.35007

[37] Vey, J. Sur le lemme de Morse, Invent. Math., Tome 40 (1977) no. 1, pp. 1-9 | Article | MR 453737 | Zbl 0348.58007

[38] Voros, A. Exact quantization condition for anharmonic oscillators (in one dimension), J. Phys. A, Tome 27 (1994), pp. 4653-4661 | Article | MR 1294967 | Zbl 0842.34090

[39] Der Waerden (Ed.), Van Sources of quantum mechanics, Dover (1968) | Zbl 1140.81002

[40] Zinn-Justin, J. Multi-instanton contributions in quantum mechanics, 2, Nucl.Phys. B, Tome 218 (1983), pp. 333-348 | Article | MR 702804