On construit par voie géométrique une classe de symboles classiques en dehors d’une sous-variété. La classe d’opérateurs pseudodifférentiels associée contient les paramétrix d’opérateurs tels que ou
We construct, in a geometric way, a class of symbols which are classical except along some submanifold. The parametrics of and , for instance, belong to the associated class of pseudodifferential operators.
@article{AIF_1980__30_3_199_0,
author = {Hirschowitz, Andr\'e},
title = {Une classe de symboles new-look},
journal = {Annales de l'Institut Fourier},
pages = {199--217},
year = {1980},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {30},
number = {3},
doi = {10.5802/aif.798},
mrnumber = {81m:58076},
zbl = {0421.35081},
language = {fr},
url = {https://www.numdam.org/articles/10.5802/aif.798/}
}
Hirschowitz, André. Une classe de symboles new-look. Annales de l'Institut Fourier, Tome 30 (1980) no. 3, pp. 199-217. doi: 10.5802/aif.798
[1] , Hypoelliptic operators with double characteristics and related pseudodifferential operators, Comm. Pure and Appl. Math., XXVII (1974), 585-639. | Zbl | MR
[2] , Fourier Integral Operators, Courant Institute of Math. Sciences, New York University, 1973. | Zbl | MR
[3] , Oscillatory Integrals, Lagrange Immersions and Unfolding of Singularities, Comm. Pure and Appl. Math., XXVII (1974), 207-281. | Zbl | MR
[4] , , Fourier Integral Operators II, Acta Math., 128 (1972), 183-265. | Zbl | MR
[5] , Singular Symbols, Preprint, 1975.
[6] , Invariants associés à une classe d'opd et applications à l'hypoellipticité, Ann. Inst. Fourier, XXVI Fasc. 2 (1976), 55-70. | Zbl | MR | Numdam
[7] , Hypoelliptic differential operators, Ann. Inst. Fourier, XI (1961), 477-492. | Zbl | MR | Numdam
[8] , Fourier Integral Operators I, Acta Math., 127 (1971), 79-183. | Zbl | MR
Cité par Sources :






