Une classe de symboles new-look
Annales de l'Institut Fourier, Volume 30 (1980) no. 3, pp. 199-217.

We construct, in a geometric way, a class of symbols which are classical except along some submanifold. The parametrics of i=1 n-1 x i 4 + x n 3 and x n 3 + i=1 n-1 x i 2 , for instance, belong to the associated class of pseudodifferential operators.

On construit par voie géométrique une classe de symboles classiques en dehors d’une sous-variété. La classe d’opérateurs pseudodifférentiels associée contient les paramétrix d’opérateurs tels que i=1 n-1 x i 4 + x n 3 ou x n 3 + i=1 n-1 x i 2 .

@article{AIF_1980__30_3_199_0,
     author = {Hirschowitz, Andr\'e},
     title = {Une classe de symboles new-look},
     journal = {Annales de l'Institut Fourier},
     pages = {199--217},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {30},
     number = {3},
     year = {1980},
     doi = {10.5802/aif.798},
     mrnumber = {81m:58076},
     zbl = {0421.35081},
     language = {fr},
     url = {http://www.numdam.org/articles/10.5802/aif.798/}
}
TY  - JOUR
AU  - Hirschowitz, André
TI  - Une classe de symboles new-look
JO  - Annales de l'Institut Fourier
PY  - 1980
SP  - 199
EP  - 217
VL  - 30
IS  - 3
PB  - Institut Fourier
PP  - Grenoble
UR  - http://www.numdam.org/articles/10.5802/aif.798/
DO  - 10.5802/aif.798
LA  - fr
ID  - AIF_1980__30_3_199_0
ER  - 
%0 Journal Article
%A Hirschowitz, André
%T Une classe de symboles new-look
%J Annales de l'Institut Fourier
%D 1980
%P 199-217
%V 30
%N 3
%I Institut Fourier
%C Grenoble
%U http://www.numdam.org/articles/10.5802/aif.798/
%R 10.5802/aif.798
%G fr
%F AIF_1980__30_3_199_0
Hirschowitz, André. Une classe de symboles new-look. Annales de l'Institut Fourier, Volume 30 (1980) no. 3, pp. 199-217. doi : 10.5802/aif.798. http://www.numdam.org/articles/10.5802/aif.798/

[1] L. Boutet De Monvel, Hypoelliptic operators with double characteristics and related pseudodifferential operators, Comm. Pure and Appl. Math., XXVII (1974), 585-639. | MR | Zbl

[2] J.J. Duistermaat, Fourier Integral Operators, Courant Institute of Math. Sciences, New York University, 1973. | MR | Zbl

[3] J.J. Duistermaat, Oscillatory Integrals, Lagrange Immersions and Unfolding of Singularities, Comm. Pure and Appl. Math., XXVII (1974), 207-281. | MR | Zbl

[4] J.J. Duistermaat, L. Hörmander, Fourier Integral Operators II, Acta Math., 128 (1972), 183-265. | MR | Zbl

[5] V. Guillemin, Singular Symbols, Preprint, 1975.

[6] B. Helffer, Invariants associés à une classe d'opd et applications à l'hypoellipticité, Ann. Inst. Fourier, XXVI Fasc. 2 (1976), 55-70. | Numdam | MR | Zbl

[7] L. Hörmander, Hypoelliptic differential operators, Ann. Inst. Fourier, XI (1961), 477-492. | Numdam | MR | Zbl

[8] L. Hörmander, Fourier Integral Operators I, Acta Math., 127 (1971), 79-183. | MR | Zbl

Cited by Sources: