@article{AIHPC_1984__1_4_295_0, author = {Di Benedetto, E. and Trudinger, Neil S.}, title = {Harnack inequalities for quasi-minima of variational integrals}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {295--308}, publisher = {Gauthier-Villars}, volume = {1}, number = {4}, year = {1984}, zbl = {0565.35012}, mrnumber = {778976}, language = {en}, url = {http://www.numdam.org/item/AIHPC_1984__1_4_295_0/} }
TY - JOUR AU - Di Benedetto, E. AU - Trudinger, Neil S. TI - Harnack inequalities for quasi-minima of variational integrals JO - Annales de l'I.H.P. Analyse non linéaire PY - 1984 DA - 1984/// SP - 295 EP - 308 VL - 1 IS - 4 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPC_1984__1_4_295_0/ UR - https://zbmath.org/?q=an%3A0565.35012 UR - https://www.ams.org/mathscinet-getitem?mr=778976 LA - en ID - AIHPC_1984__1_4_295_0 ER -
Di Benedetto, E.; Trudinger, Neil S. Harnack inequalities for quasi-minima of variational integrals. Annales de l'I.H.P. Analyse non linéaire, Tome 1 (1984) no. 4, pp. 295-308. http://www.numdam.org/item/AIHPC_1984__1_4_295_0/
[1] Sulla differenziabilità e l'analiticità degli integrali multipli regolari, Mem. Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. (3), t. 3, 1957, p. 25-43. | MR 93649 | Zbl 0084.31901
,[2] Quasi-Minima, Ann. d'Inst. Henri Poincaré, Analyse Non Linéaire, t. 1, 1984, p. 79 à 107. | Numdam | MR 778969 | Zbl 0541.49008
and ,[3] On the regularity of the minima of variational integrals, Acta Math., t. 148, 1982, p. 31-46. | MR 666107 | Zbl 0494.49031
and ,[4] Elliptic Partial Differential Equations of Second Order. 2nd Ed. Springer-Verlag, New York, 1983. | MR 737190 | Zbl 0562.35001
and ,[5] Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968. | MR 244627 | Zbl 0164.13002
and ,[6] Certain properties of Solutions of parabolic equations with measurable coefficients. Izvestia Akad. Nauk SSSR, t. 40, 1980, p. 161-175, English transl. Math. USSR Izv., t. 16, 1981. | MR 563790 | Zbl 0464.35035
, ,[7] Multiple integrals in the Calculus of Variations. Springer-Verlag, New York, 1966. | MR 202511 | Zbl 0142.38701
,[8] A new proof of de Giorgi's theorem concerning the regularity problem for elliptic differential equations. Comm. Pure Appl. Math., t. 13, 1960, p. 457- 468. | MR 170091 | Zbl 0111.09301
,[9] On Harnack's theorem for elliptic differential equations. Comm. Pure Appl. Math., t. 14, 1961, p. 577-591. | MR 159138 | Zbl 0111.09302
,[10] Local behavior of solutions of quasi-linear elliptic equations. Acta Math., t. 111, 1964, p. 247-302. | MR 170096 | Zbl 0128.09101
,[11] On Harnack type inequalities and their application to quasi-linear elliptic equations. Comm. Pure Appl. Math., t. 20, 1967, p. 721-747. | MR 226198 | Zbl 0153.42703
,[12] Local estimates for subsolutions and supersolutions of general second order elliptic quasilinear equations. Inventiones Math., t. 61, 1980, p. 67-69. | MR 587334 | Zbl 0453.35028
,