Multiple orbits for hamiltonian systems on starshaped surfaces with symmetries
Annales de l'I.H.P. Analyse non linéaire, Volume 1 (1984) no. 4, pp. 285-294.
@article{AIHPC_1984__1_4_285_0,
     author = {Girardi, Mario},
     title = {Multiple orbits for hamiltonian systems on starshaped surfaces with symmetries},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {285--294},
     publisher = {Gauthier-Villars},
     volume = {1},
     number = {4},
     year = {1984},
     mrnumber = {778975},
     zbl = {0582.70019},
     language = {en},
     url = {http://www.numdam.org/item/AIHPC_1984__1_4_285_0/}
}
TY  - JOUR
AU  - Girardi, Mario
TI  - Multiple orbits for hamiltonian systems on starshaped surfaces with symmetries
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 1984
SP  - 285
EP  - 294
VL  - 1
IS  - 4
PB  - Gauthier-Villars
UR  - http://www.numdam.org/item/AIHPC_1984__1_4_285_0/
LA  - en
ID  - AIHPC_1984__1_4_285_0
ER  - 
%0 Journal Article
%A Girardi, Mario
%T Multiple orbits for hamiltonian systems on starshaped surfaces with symmetries
%J Annales de l'I.H.P. Analyse non linéaire
%D 1984
%P 285-294
%V 1
%N 4
%I Gauthier-Villars
%U http://www.numdam.org/item/AIHPC_1984__1_4_285_0/
%G en
%F AIHPC_1984__1_4_285_0
Girardi, Mario. Multiple orbits for hamiltonian systems on starshaped surfaces with symmetries. Annales de l'I.H.P. Analyse non linéaire, Volume 1 (1984) no. 4, pp. 285-294. http://www.numdam.org/item/AIHPC_1984__1_4_285_0/

[1] A. Ambrosetti, G. Mancini, On a theorem by Ekeland and Lasry concerning the number of periodic Hamiltonian trajectories, J. Diff. Eq., t. 43, 1981, p. 1-6. | Zbl

[2] A. Ambrosetti, G. Mancini, Solutions of Minimal Period for a Class of Convex Hamiltonian systems, Math. Annalen, t. 255, 1981, p. 405-421. | MR | Zbl

[3] A. Ambrosetti, P.H. Rabinowitz, Dual variational method in critical point theory and applications, J. Functional Analysis, t. 14, 1973, p. 349-381. | MR | Zbl

[4] V. Benci, A geometrical index for the group S1 and some applications to the study of periodic solutions of O. D. E. Comm. Pure Appl. Math., t. 34, 1981, p. 393-432. | MR | Zbl

[5] V. Benci, On the critical point theory for indefinite functional in the presence of symmetries to appear in Trans. A. M. S. | MR | Zbl

[6] H. Berestycki, J.M. Lasry, G. Mancini, B. Ruf, Sur le nombre des orbites périodique des équations de Hamilton sur une surface étoilée, note aux C. R. A. S., t. A, Paris, to appear. | Zbl

[7] H. Berestycki, J.M. Lasry, G. Mancini, B. Ruf, Existence of Multiple Periodic Orbits on Star-shaped Hamilton surfaces, preprint. | MR

[8] I. Ekeland, J.M. Lasry, On the number of periodic trajectories for a Hamiltonian flow on a convex energy surface, Ann. Math., t. 112, 1980, p. 283-319. | MR | Zbl

[9] H. Hofer, A simple proof for a result of I. Ekeland and J. M. Lasry concerning the number of periodic Hamiltonian trajectories on a prescribed energy surface, to appear on B. U. M. I.

[10] J. Moser, Periodic orbits near an equilibrium and a theorem by A. Weinstein, Comm. Pure Appl. Math., t. 29, 1976, p. 724-747. | MR | Zbl

[11] P.H. Rabinowitz, Periodic Solutions of Hamiltonian systems, Comm. Pure Appl. Math., t. 31, 1978, p. 157-184. | MR | Zbl

[12] P.H. Rabinowitz, On subharmonic solutions of Hamiltonian systems, Comm. Pure Appl. Math., t. 33, 1980, p. 603-633. | MR | Zbl

[13] E.W.C. Van Groesen, Existence of multiple normal mode trajectories on convex energy surfaces of even, classical Hamiltonian system. Preprint.

[14] A. Weinstein, Normal mode for nonlinear Hamiltonian systems, Inv. Math., t. 20, 1973, p. 47-57. | Zbl