Coefficient systems and supersingular representations of GL 2 (F)  [ Systèmes de coefficients et représentations supersingulières de GL 2 (F) ] (2004)


Paskunas, Vytautas
Mémoires de la Société Mathématique de France, Tome 99 (2004) vi-84 p doi : 10.24033/msmf.412
URL stable : http://www.numdam.org/item?id=MSMF_2004_2_99__1_0

Bibliographie

[1] L. Barthel & R. Livné« Irreducible modular representations of GL 2 of a local field », Duke Math. J. 75 (1994), p. 261–292. Zbl 0826.22019 | MR 1290194

[2] —, « Modular representations of GL 2 of a local field: the ordinary, unramified case », J. Number Theory 55 (1995), no. 1, p. 1–27. MR 1361556

[3] R. Brauer & C. Nesbitt« On the modular characters of groups », Ann. of Math. 42 (1941), p. 556–590. Zbl 0027.15202 | MR 4042

[4] C. Breuil« Sur quelques représentations modulaires et p-adiques de GL 2 (𝐐 p ) I », Compositio Math. 138 (2003), no. 2, p. 165–188. MR 2018825

[5] —, « Sur quelques représentations modulaires et p-adiques de GL 2 (𝐐 p ) II », J. Inst. Math. Jussieu 2 (2003), no. 1, p. 23–58. MR 1955206

[6] M. Cabanes & M. EnguehardRepresentation theory of finite reductive groups, New Mathematical Monographs, vol. 1, Cambridge University Press, Cambridge, 2004. Zbl 1069.20032 | MR 2057756

[7] R.W. Carter & G. Lusztig« Modular representations of finite groups of Lie type », Proc. London Math. Soc. (3) 32 (1976), p. 347–384. Zbl 0338.20013 | MR 396731

[8] C.W. Curtis« Modular representations of finite groups with split BN-pair », in Seminar on algebraic groups and related finite groups (A. Dold & B. Eckmann, éds.), Lect. Notes in Math., vol. 131, Springer, Berlin, 1970, p. 57–95.

[9] J.E. HumphreysIntroduction to Lie Algebras and Representation Theory, Graduate Texts in Math., vol. 9, Springer-Verlag, 1972. Zbl 0254.17004 | MR 323842

[10] A.V. Jeyakumar« Principal indecomposable representations for the group SL (2,q) », J. Algebra 30 (1974), p. 444–458. Zbl 0286.20010 | MR 342601

[11] F.A. Richen« Modular representations of split BN-pairs », Trans. Amer. Math. Soc. 140 (1969), p. 435–460. Zbl 0181.03801 | MR 242972

[12] M.A. Ronan & S.D. Smith« Sheaves on Buildings and Modular Representations of Chevalley Groups », J. Algebra 96 (1985), p. 319–346. Zbl 0604.20043 | MR 810532

[13] P. Schneider & U. Stuhler« Resolutions for smooth representations of the general linear group over a local field », J. reine angew. Math. 436 (1993), p. 19–32. Zbl 0780.20026 | | MR 1207278

[14] —, « Representation theory and sheaves on the Bruhat-Tits building », Publ. Math. Inst. Hautes Études Sci. 85 (1997), p. 97–191. Numdam | Zbl 0892.22012 |

[15] J.-P. SerreLinear representations of finite groups, Graduate Texts in Math., vol. 42, Springer-Verlag, 1977. MR 450380

[16] P. Symonds & T. Weigel« Cohomology of p-adic Analytic Groups », in New Horizons in pro-p groups (M. du Sautoy, D. Segal & A. Shalev, éds.), Progress in Math., vol. 184, Birkhauser, Boston, Basel, Berlin, 2000, p. 349–410. Zbl 0973.20043

[17] M.-F. Vignéras« Pro-p-Iwahori Hecke algebra and supersingular 𝐅 ¯ p -representattions », Preprint http://www.math.jussieu.fr/~vigneras/recent.html, 2003.

[18] —, « Representations of the p-adic group GL(2,F) modulo p », Compositio Math. 140 (2004), p. 333–358. Zbl 1049.22010 | MR 2027193