Coefficient systems and supersingular representations of GL 2 (F)
Mémoires de la Société Mathématique de France, no. 99 (2004) , 90 p.

Let F be a non-Archimedean local field with the residual characteristic p. We construct a “good” number of smooth irreducible 𝐅 ¯ p -representations of GL 2 (F), which are supersingular in the sense of Barthel and Livné. If F=𝐐 p then results of Breuil imply that our construction gives all the supersingular representations up to the twist by an unramified quasi-character. We conjecture that this is true for an arbitrary F.

Soit F un corps local non archimédien de caractéristique résiduelle p. Nous construisons le « bon » nombre de 𝐅 ¯ p -représentations lisses et irréductibles de GL 2 (F) qui sont supersingulières au sens de Barthel et Livné. Si F=𝐐 p , les résultats de Breuil impliquent alors que notre construction donne toutes les représentations supersingulières à la torsion près par un quasi-caractère non ramifié. Nous conjecturons que ceci reste vrai pour F quelconque.

DOI: 10.24033/msmf.412
Classification: 22E50
Keywords: Supersingular, mod $p$-representations
Mot clés : Supersingulière, représentation mod $p$
@book{MSMF_2004_2_99__1_0,
     author = {Paskunas, Vytautas},
     title = {Coefficient systems and supersingular representations of $\mathrm{GL}_2(F)$},
     series = {M\'emoires de la Soci\'et\'e Math\'ematique de France},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {99},
     year = {2004},
     doi = {10.24033/msmf.412},
     mrnumber = {2128381},
     zbl = {1249.22010},
     language = {en},
     url = {http://www.numdam.org/item/MSMF_2004_2_99__1_0/}
}
TY  - BOOK
AU  - Paskunas, Vytautas
TI  - Coefficient systems and supersingular representations of $\mathrm{GL}_2(F)$
T3  - Mémoires de la Société Mathématique de France
PY  - 2004
IS  - 99
PB  - Société mathématique de France
UR  - http://www.numdam.org/item/MSMF_2004_2_99__1_0/
DO  - 10.24033/msmf.412
LA  - en
ID  - MSMF_2004_2_99__1_0
ER  - 
%0 Book
%A Paskunas, Vytautas
%T Coefficient systems and supersingular representations of $\mathrm{GL}_2(F)$
%S Mémoires de la Société Mathématique de France
%D 2004
%N 99
%I Société mathématique de France
%U http://www.numdam.org/item/MSMF_2004_2_99__1_0/
%R 10.24033/msmf.412
%G en
%F MSMF_2004_2_99__1_0
Paskunas, Vytautas. Coefficient systems and supersingular representations of $\mathrm{GL}_2(F)$. Mémoires de la Société Mathématique de France, Serie 2, no. 99 (2004), 90 p. doi : 10.24033/msmf.412. http://numdam.org/item/MSMF_2004_2_99__1_0/

[1] L. Barthel & R. Livné« Irreducible modular representations of GL 2 of a local field », Duke Math. J. 75 (1994), p. 261–292. | MR | Zbl

[2] —, « Modular representations of GL 2 of a local field: the ordinary, unramified case », J. Number Theory 55 (1995), no. 1, p. 1–27. | MR

[3] R. Brauer & C. Nesbitt« On the modular characters of groups », Ann. of Math. 42 (1941), p. 556–590. | MR | Zbl

[4] C. Breuil« Sur quelques représentations modulaires et p-adiques de GL 2 (𝐐 p ) I », Compositio Math. 138 (2003), no. 2, p. 165–188. | MR

[5] —, « Sur quelques représentations modulaires et p-adiques de GL 2 (𝐐 p ) II », J. Inst. Math. Jussieu 2 (2003), no. 1, p. 23–58. | MR

[6] M. Cabanes & M. EnguehardRepresentation theory of finite reductive groups, New Mathematical Monographs, vol. 1, Cambridge University Press, Cambridge, 2004. | MR | Zbl

[7] R.W. Carter & G. Lusztig« Modular representations of finite groups of Lie type », Proc. London Math. Soc. (3) 32 (1976), p. 347–384. | MR | Zbl

[8] C.W. Curtis« Modular representations of finite groups with split BN-pair », in Seminar on algebraic groups and related finite groups (A. Dold & B. Eckmann, éds.), Lect. Notes in Math., vol. 131, Springer, Berlin, 1970, p. 57–95.

[9] J.E. HumphreysIntroduction to Lie Algebras and Representation Theory, Graduate Texts in Math., vol. 9, Springer-Verlag, 1972. | MR | Zbl

[10] A.V. Jeyakumar« Principal indecomposable representations for the group SL (2,q) », J. Algebra 30 (1974), p. 444–458. | MR | Zbl

[11] F.A. Richen« Modular representations of split BN-pairs », Trans. Amer. Math. Soc. 140 (1969), p. 435–460. | MR | Zbl

[12] M.A. Ronan & S.D. Smith« Sheaves on Buildings and Modular Representations of Chevalley Groups », J. Algebra 96 (1985), p. 319–346. | MR | Zbl

[13] P. Schneider & U. Stuhler« Resolutions for smooth representations of the general linear group over a local field », J. reine angew. Math. 436 (1993), p. 19–32. | MR | EuDML | Zbl

[14] —, « Representation theory and sheaves on the Bruhat-Tits building », Publ. Math. Inst. Hautes Études Sci. 85 (1997), p. 97–191. | EuDML | Zbl | Numdam

[15] J.-P. SerreLinear representations of finite groups, Graduate Texts in Math., vol. 42, Springer-Verlag, 1977. | MR

[16] P. Symonds & T. Weigel« Cohomology of p-adic Analytic Groups », in New Horizons in pro-p groups (M. du Sautoy, D. Segal & A. Shalev, éds.), Progress in Math., vol. 184, Birkhauser, Boston, Basel, Berlin, 2000, p. 349–410. | Zbl

[17] M.-F. Vignéras« Pro-p-Iwahori Hecke algebra and supersingular 𝐅 ¯ p -representattions », Preprint http://www.math.jussieu.fr/~vigneras/recent.html, 2003.

[18] —, « Representations of the p-adic group GL(2,F) modulo p », Compositio Math. 140 (2004), p. 333–358. | MR | Zbl

Cited by Sources: