Cobordisme complexe des espaces profinis et foncteur T de Lannes (2004)


Dehon, François-Xavier
Mémoires de la Société Mathématique de France, Tome 98 (2004) vi-138 p doi : 10.24033/msmf.411
URL stable : http://www.numdam.org/item?id=MSMF_2004_2_98__1_0

Bibliographie

[1] J.F. AdamsLectures on Generalized Cohomology Theories, Lect. Notes in Math., vol. 99, Springer, 1969. Zbl 0193.51702 | MR 251716

[2] —, Stable Homotopy and Generalized Homology, University of Chicago Press, 1974.

[3] M. Artin & B. MazurEtale Homotopy, Lect. Notes in Math., vol. 100, Springer, 1969. Zbl 0182.26001 | MR 245577

[4] M. Barr & J. Beck« Homology and standard constructions », in Seminar on triples and Categorical Homology Theory, Lect. Notes in Math., vol. 80, Springer, 1969, p. 245–335. Zbl 0176.29003 | MR 258917

[5] M. Bendersky, E.B. Curtis & H.R. Miller« The Unstable Adams Spectral Sequence for Generalized Homology », Topology 3 (1978), p. 229–248. Zbl 0395.55010 | MR 508887

[6] J.M. Boardman« Stable Operations in Generalized Cohomology », in Handbook of algebraic topology, 1995, p. 585–686. Zbl 0861.55008 | MR 1361899

[7] —, « Conditionally Convergent Spectral Sequences », Contemp. Math., vol. 239, 1999, p. 49–84. Zbl 0947.55020 | MR 1718076

[8] J.M. Boardman, D.C. Johnson & W.S. Wilson« Unstable Operations in Generalized Cohomology », in Handbook of algebraic topology, 1995, p. 687–828. Zbl 0876.55016 | MR 1361900

[9] F. BorceuxHandbook of categorical algebra, 2. Categories and structures, Cambridge University Press, 1994. Zbl 0911.18001 | MR 1313497

[10] Bourbaki – Algèbre, chap. X, Masson, 1980.

[11] A.K. Bousfield« Nice homology coalgebra », Trans. Amer. Math. Soc. 148 (1970), p. 473–489. Zbl 0199.33302 | MR 258919

[12] —, « On the homology spectral sequence of a cosimplicial space », Amer. J. Math. 109 (1987), p. 361–394. Zbl 0623.55009 | MR 882428

[13] A.K. Bousfield & D.M. KanHomotopy Limits, Completions, and Localizations, Lect. Notes in Math., vol. 304, Springer, 1972. Zbl 0259.55004 | MR 365573

[14] H. Cartan & S. EilenbergHomological Algebra, Princeton University Press, 1956. Zbl 0075.24305 | MR 77480

[15] P.E. Conner & L. Smith« On the complex bordism of finite complexes », Publ. Math. Inst. Hautes Études Sci. 37 (1969), p. 117–221. Numdam | Zbl 0192.60201 | | MR 267571

[16] F.-X. Dehon & J. Lannes« Sur les espaces fonctionnels dont la source est le classifiant d’un groupe de Lie compact commutatif », Publ. Math. Inst. Hautes Études Sci. 89 (1999), p. 127–177. | MR 1793415

[17] A. Dress« Zur Spectralsequenz von Faserungen », Invent. Math. 3 (1967), p. 172–178. Zbl 0147.23401 | | MR 267585

[18] E. Dror Farjoun & J. Smith« A Geometric Interpretation of Lannes’ Functor T », in Théorie de l’homotopie, Astérisque, vol. 191, 1990, p. 87–95. Zbl 0723.55006 | MR 1098968

[19] W.G. Dwyer & J. Splalinski« Homotopy Theories and Model Categories », in Handbook of algebraic topology, 1995, p. 73–126. Zbl 0869.55018 | MR 1361887

[20] P.G. Goerss & J.F. JardineSimplicial Homotopy Theory, Progress in Math., vol. 174, Birkäuser, 1999. Zbl 0914.55004 | MR 1711612

[21] N. Kuhn & M. Winstead« On the Torsion in the Cohomology of Certain Mapping Spaces », Topology 35 (1996), p. 875–881. Zbl 0861.55019 | MR 1404914

[22] P.S. Landweber« Coherence, Flatness and Cobordism of Classifying Spaces », in Proc. adv. Study Inst. alg. Topol., 1970, p. 256–269. Zbl 0223.57025 | MR 271964

[23] J. Lannes« Sur les espaces fonctionnels dont la source est le classifiant d’un p-groupe abélien élémentaire », Publ. Math. Inst. Hautes Études Sci. 75 (1992), p. 135–244. | MR 1179079

[24] —, « Divers aspects des opérations de Steenrod », in Journée en l’honneur de Henri Cartan, Journée Annuelle, Société Mathématique de France, 1997, p. 18–27. MR 1492594

[25] S. Mac LaneCategories for the Working Mathematician, Springer, 1971. Zbl 0232.18001 | MR 1712872

[26] P. MaySimplicial Objects in Algebraic Topology, University of Chicago Press, 1967. MR 1206474

[27] —, The geometry of iterated loop spaces, Lect. Notes in Math., vol. 271, Springer, 1972. Zbl 0244.55009

[28] F. Morel« Quelques remarques sur la cohomologie modulo p des pro-p-espaces et les résultats de Jean Lannes concernant les espaces fonctionnels 𝐡𝐨𝐦(BV,X) », Ann. scient. Éc. Norm. Sup. 4 e série 26 (1993), p. 309–360.

[29] —, « Ensembles profinis simpliciaux et interprétation géométrique du foncteur T », Bull. Soc. math. France 124 (1996), p. 347–373. | MR 1414543

[30] D.G. QuillenHomotopical Algebra, Lect. Notes in Math., vol. 43, Springer, 1967. Zbl 0168.20903 | MR 223432

[31] —, « An Application of Simplicial Profinite Groups », Comment. Math. Helv. 44 (1969), p. 45–60. Zbl 0232.20065 | | MR 242156

[32] D.C. Ravenel & W.S. Wilson« The Hopf ring for complex cobordism », J. Pure Appl. Algebra 9 (1976), p. 241–280. Zbl 0373.57020 | MR 448337

[33] D.C. Ravenel, W.S. Wilson & N. Yagita« Brown-Peterson cohomology from Morava K-theory », K-Theory 15 (1998), p. 147–199. Zbl 0912.55002 | MR 1648284

[34] D. Rector« Steenrod operations in the Eilenberg-Moore spectral sequence », Comment. Math. Helv. 45 (1970), p. 540–552. Zbl 0209.27501 | | MR 278310

[35] L. SchwartzUnstable Modules over the Steenrod Algebra and Sullivan’s Fixed Point Set Conjecture, University of Chicago Press, 1994. Zbl 0871.55001 | MR 1282727

[36] G. Segal« Classifying Spaces and Spectral Sequences », Publ. Math. Inst. Hautes Études Sci. 34 (1968), p. 105–112. Numdam | Zbl 0199.26404 | | MR 232393

[37] D. Sullivan« Genetics of Homotopy Theory and the Adams Conjecture », Ann. of Math. 100 (1974), p. 1–79. Zbl 0355.57007 | MR 442930

[38] T. tom Dieck – « Bordism of G-manifolds and integrality theorems », Topology 9 (1970), p. 345–358. MR 266241

[39] C.W. Wilkerson« lambda-ring, binomial domains, and vector bundles over P », Comm. Algebra 10 (1982), p. 311–328. Zbl 0492.55004 | MR 651605

[40] W.S. Wilson« The Ω-spectrum for Brown-Peterson Cohomology, Part I », Comment. Math. Helv. 48 (1973), p. 45–55. Zbl 0256.55007 | | MR 326712