Bref survol du théorème de non-plongement de J. Cheeger et B. Kleiner pour le groupe d’Heisenberg dans
This is a short survey of Cheeger and Kleiner’s nonembeddability theorem for Heisenberg group into
Mot clés : lipschitzien, plongement, espace de Banach, périmètre, groupe d’Heisenberg, algorithme
Mots-clés : Lipschitz, embedding, Banach space, perimeter, Heisenberg group, algorithm
@article{TSG_2006-2007__25__159_0, author = {Pansu, Pierre}, title = {Plongements quasiisom\'etriques du groupe de {Heisenberg} dans $L^p$, d{\textquoteright}apr\`es {Cheeger,} {Kleiner,} {Lee,} {Naor}}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {159--176}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {25}, year = {2006-2007}, doi = {10.5802/tsg.253}, zbl = {1170.46304}, mrnumber = {2478814}, language = {fr}, url = {https://www.numdam.org/articles/10.5802/tsg.253/} }
TY - JOUR AU - Pansu, Pierre TI - Plongements quasiisométriques du groupe de Heisenberg dans $L^p$, d’après Cheeger, Kleiner, Lee, Naor JO - Séminaire de théorie spectrale et géométrie PY - 2006-2007 SP - 159 EP - 176 VL - 25 PB - Institut Fourier PP - Grenoble UR - https://www.numdam.org/articles/10.5802/tsg.253/ DO - 10.5802/tsg.253 LA - fr ID - TSG_2006-2007__25__159_0 ER -
%0 Journal Article %A Pansu, Pierre %T Plongements quasiisométriques du groupe de Heisenberg dans $L^p$, d’après Cheeger, Kleiner, Lee, Naor %J Séminaire de théorie spectrale et géométrie %D 2006-2007 %P 159-176 %V 25 %I Institut Fourier %C Grenoble %U https://www.numdam.org/articles/10.5802/tsg.253/ %R 10.5802/tsg.253 %G fr %F TSG_2006-2007__25__159_0
Pansu, Pierre. Plongements quasiisométriques du groupe de Heisenberg dans $L^p$, d’après Cheeger, Kleiner, Lee, Naor. Séminaire de théorie spectrale et géométrie, Tome 25 (2006-2007), pp. 159-176. doi : 10.5802/tsg.253. https://www.numdam.org/articles/10.5802/tsg.253/
[1] Some fine properties of sets of finite perimeter in Ahlfors regular metric measure spaces, Adv. Math., Volume 159 (2001) no. 1, pp. 51-67 | MR | Zbl
[2]
[3] Euclidean distortion and the sparsest cut, J. Amer. Math. Soc., Volume 21 (2008) no. 1, p. 1-21 (electronic) | MR | Zbl
[4] Espaces métriques, plongements, facteurs, U.E.R. Mathématique, Université Paris XI, Orsay, 1977 (Thèse de doctorat, Publications Mathématiques d’Orsay, No. 223-7769) | MR | Zbl
[5] Plongements lipschitziens dans
[6] On Lipschitz embedding of finite metric spaces in Hilbert space, Israel J. Math., Volume 52 (1985) no. 1-2, pp. 46-52 | MR | Zbl
[7] The metrical interpretation of superreflexivity in Banach spaces, Israel J. Math., Volume 56 (1986) no. 2, pp. 222-230 | MR | Zbl
[8] Lois stables et espaces
[9] Differentiating maps into
[10] On the differentiability of Lipschitz maps from metric measure spaces to Banach spaces, Inspired by S. S. Chern (Nankai Tracts Math.), Volume 11, World Sci. Publ., Hackensack, NJ, 2006, pp. 129-152 | MR
[11] Nuovi teoremi relativi alle misure
[12] Geometry of cuts and metrics, Algorithms and Combinatorics, 15, Springer-Verlag, Berlin, 1997 | MR | Zbl
[13] On the nonexistence of uniform homeomorphisms between
[14] On the structure of finite perimeter sets in step 2 Carnot groups, J. Geom. Anal., Volume 13 (2003) no. 3, pp. 421-466 | MR | Zbl
[15] Semidefinite programming in combinatorial optimization, Math. Programming, Volume 79 (1997) no. 1-3, Ser. B, pp. 143-161 Lectures on mathematical programming (ismp97) (Lausanne, 1997) | MR | Zbl
[16] Asymptotic invariants of infinite groups, Geometric group theory, Vol. 2 (Sussex, 1991) (London Math. Soc. Lecture Note Ser.), Volume 182, Cambridge Univ. Press, Cambridge, 1993, pp. 1-295 | MR
[17] Random walk in random groups, Geom. Funct. Anal., Volume 13 (2003) no. 1, pp. 73-146 | MR | Zbl
[18] From local to global in quasiconformal structures, Proc. Nat. Acad. Sci. U.S.A., Volume 93 (1996) no. 2, pp. 554-556 | MR | Zbl
[19] On the connection between weak and strong convergence, Dopovidi Akad. Nauk Ukraïn. RSR, Volume 1959 (1959), pp. 949-952 | MR | Zbl
[20] Mean ergodic theorem in abstract
[21] The Unique Games Conjecture, Integrality Gap for Cut Problems and the Embeddability of Negative Type Metrics into
[22] Mappings into normed linear spaces, Fund. Math., Volume 49 (1960/1961), pp. 25-34 | MR | Zbl
[23]
[24] Squared
[25] The geometry of graphs and some of its algorithmic applications, Combinatorica, Volume 15 (1995) no. 2, pp. 215-245 | MR | Zbl
[26] The large scale geometry of nilpotent Lie groups, Comm. Anal. Geom., Volume 9 (2001) no. 5, pp. 951-982 | MR | Zbl
[27] On the nonexistence of bi-Lipschitz parameterizations and geometric problems about
[28] Asymptotic isoperimetry on groups and uniform embeddings into Banach spaces Preprint (2006)
[29] The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space, Invent. Math., Volume 139 (2000) no. 1, pp. 201-240 | MR | Zbl
Cité par Sources :