This is a short survey of Cheeger and Kleiner’s nonembeddability theorem for Heisenberg group into .
Bref survol du théorème de non-plongement de J. Cheeger et B. Kleiner pour le groupe d’Heisenberg dans .
Mot clés : lipschitzien, plongement, espace de Banach, périmètre, groupe d’Heisenberg, algorithme
Keywords: Lipschitz, embedding, Banach space, perimeter, Heisenberg group, algorithm
@article{TSG_2006-2007__25__159_0, author = {Pansu, Pierre}, title = {Plongements quasiisom\'etriques du groupe de {Heisenberg} dans $L^p$, d{\textquoteright}apr\`es {Cheeger,} {Kleiner,} {Lee,} {Naor}}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {159--176}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {25}, year = {2006-2007}, doi = {10.5802/tsg.253}, zbl = {1170.46304}, mrnumber = {2478814}, language = {fr}, url = {http://www.numdam.org/articles/10.5802/tsg.253/} }
TY - JOUR AU - Pansu, Pierre TI - Plongements quasiisométriques du groupe de Heisenberg dans $L^p$, d’après Cheeger, Kleiner, Lee, Naor JO - Séminaire de théorie spectrale et géométrie PY - 2006-2007 SP - 159 EP - 176 VL - 25 PB - Institut Fourier PP - Grenoble UR - http://www.numdam.org/articles/10.5802/tsg.253/ DO - 10.5802/tsg.253 LA - fr ID - TSG_2006-2007__25__159_0 ER -
%0 Journal Article %A Pansu, Pierre %T Plongements quasiisométriques du groupe de Heisenberg dans $L^p$, d’après Cheeger, Kleiner, Lee, Naor %J Séminaire de théorie spectrale et géométrie %D 2006-2007 %P 159-176 %V 25 %I Institut Fourier %C Grenoble %U http://www.numdam.org/articles/10.5802/tsg.253/ %R 10.5802/tsg.253 %G fr %F TSG_2006-2007__25__159_0
Pansu, Pierre. Plongements quasiisométriques du groupe de Heisenberg dans $L^p$, d’après Cheeger, Kleiner, Lee, Naor. Séminaire de théorie spectrale et géométrie, Volume 25 (2006-2007), pp. 159-176. doi : 10.5802/tsg.253. http://www.numdam.org/articles/10.5802/tsg.253/
[1] Some fine properties of sets of finite perimeter in Ahlfors regular metric measure spaces, Adv. Math., Volume 159 (2001) no. 1, pp. 51-67 | MR | Zbl
[2] approximation to SPARSEST CUT in time, 45th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2004), Los Alamitos, CA (2004)
[3] Euclidean distortion and the sparsest cut, J. Amer. Math. Soc., Volume 21 (2008) no. 1, p. 1-21 (electronic) | MR | Zbl
[4] Espaces métriques, plongements, facteurs, U.E.R. Mathématique, Université Paris XI, Orsay, 1977 (Thèse de doctorat, Publications Mathématiques d’Orsay, No. 223-7769) | MR | Zbl
[5] Plongements lipschitziens dans , Bull. Soc. Math. France, Volume 111 (1983) no. 4, pp. 429-448 | Numdam | MR | Zbl
[6] On Lipschitz embedding of finite metric spaces in Hilbert space, Israel J. Math., Volume 52 (1985) no. 1-2, pp. 46-52 | MR | Zbl
[7] The metrical interpretation of superreflexivity in Banach spaces, Israel J. Math., Volume 56 (1986) no. 2, pp. 222-230 | MR | Zbl
[8] Lois stables et espaces , Ann. Inst. H. Poincaré Sect. B (N.S.), Volume 2 (1965/1966), pp. 231-259 | Numdam | MR | Zbl
[9] Differentiating maps into , and the geometry of BV functions, arXiv :math/0611954
[10] On the differentiability of Lipschitz maps from metric measure spaces to Banach spaces, Inspired by S. S. Chern (Nankai Tracts Math.), Volume 11, World Sci. Publ., Hackensack, NJ, 2006, pp. 129-152 | MR
[11] Nuovi teoremi relativi alle misure -dimensionali in uno spazio ad dimensioni, Ricerche Mat., Volume 4 (1955), pp. 95-113 | MR | Zbl
[12] Geometry of cuts and metrics, Algorithms and Combinatorics, 15, Springer-Verlag, Berlin, 1997 | MR | Zbl
[13] On the nonexistence of uniform homeomorphisms between -spaces, Ark. Mat., Volume 8 (1969), p. 103-105 (1969) | MR | Zbl
[14] On the structure of finite perimeter sets in step 2 Carnot groups, J. Geom. Anal., Volume 13 (2003) no. 3, pp. 421-466 | MR | Zbl
[15] Semidefinite programming in combinatorial optimization, Math. Programming, Volume 79 (1997) no. 1-3, Ser. B, pp. 143-161 Lectures on mathematical programming (ismp97) (Lausanne, 1997) | MR | Zbl
[16] Asymptotic invariants of infinite groups, Geometric group theory, Vol. 2 (Sussex, 1991) (London Math. Soc. Lecture Note Ser.), Volume 182, Cambridge Univ. Press, Cambridge, 1993, pp. 1-295 | MR
[17] Random walk in random groups, Geom. Funct. Anal., Volume 13 (2003) no. 1, pp. 73-146 | MR | Zbl
[18] From local to global in quasiconformal structures, Proc. Nat. Acad. Sci. U.S.A., Volume 93 (1996) no. 2, pp. 554-556 | MR | Zbl
[19] On the connection between weak and strong convergence, Dopovidi Akad. Nauk Ukraïn. RSR, Volume 1959 (1959), pp. 949-952 | MR | Zbl
[20] Mean ergodic theorem in abstract -spaces, Proc. Imp. Acad., Tokyo, Volume 15 (1939), pp. 121-123 | MR | Zbl
[21] The Unique Games Conjecture, Integrality Gap for Cut Problems and the Embeddability of Negative Type Metrics into ., 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2005), Los Alamitos, CA (2005), pp. 53-62
[22] Mappings into normed linear spaces, Fund. Math., Volume 49 (1960/1961), pp. 25-34 | MR | Zbl
[23] metrics on the Heisenberg group and the Goemans-Linial conjecture, 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2006), Los Alamitos, CA (2005), p. 99-108, Preprint (2006)
[24] Squared metrics into , Open Problems, Haifa, Workshop on Discrete Metric Spaces and their Algorithmic Applications (2002)
[25] The geometry of graphs and some of its algorithmic applications, Combinatorica, Volume 15 (1995) no. 2, pp. 215-245 | MR | Zbl
[26] The large scale geometry of nilpotent Lie groups, Comm. Anal. Geom., Volume 9 (2001) no. 5, pp. 951-982 | MR | Zbl
[27] On the nonexistence of bi-Lipschitz parameterizations and geometric problems about -weights, Rev. Mat. Iberoamericana, Volume 12 (1996) no. 2, pp. 337-410 | MR | Zbl
[28] Asymptotic isoperimetry on groups and uniform embeddings into Banach spaces Preprint (2006)
[29] The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space, Invent. Math., Volume 139 (2000) no. 1, pp. 201-240 | MR | Zbl
Cited by Sources: