We review results in the literature on asymptotic limits for the Ginzburg-Landau equations. We then present results where we show, by a modulated energy method, that solutions of the Gross-Pitaevskii equation converge to solutions of the incompressible Euler equation, and solutions to the parabolic Ginzburg-Landau equations converge to solutions of a limiting equation which we identify.
We work in the setting of the whole plane (and possibly the whole three-dimensional space in the Gross-Pitaevskii case), in the asymptotic limit where , the characteristic lengthscale of the vortices, tends to , and in a situation where the number of vortices blows up as . The requirements are that should blow up faster than in the Gross-Pitaevskii case, and at most like in the parabolic case. Both results assume a well-prepared initial condition and regularity of the limiting initial data, and use the regularity of the solution to the limiting equations.
@article{SLSEDP_2015-2016____A3_0, author = {Serfaty, Sylvia}, title = {Mean field limits for {Ginzburg-Landau} vortices}, journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications}, note = {talk:3}, pages = {1--15}, publisher = {Institut des hautes des scientifiques & Centre de mathtiques Laurent Schwartz, ole polytechnique}, year = {2015-2016}, doi = {10.5802/slsedp.91}, language = {en}, url = {http://www.numdam.org/articles/10.5802/slsedp.91/} }
TY - JOUR AU - Serfaty, Sylvia TI - Mean field limits for Ginzburg-Landau vortices JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:3 PY - 2015-2016 SP - 1 EP - 15 PB - Institut des hautes des scientifiques & Centre de mathtiques Laurent Schwartz, ole polytechnique UR - http://www.numdam.org/articles/10.5802/slsedp.91/ DO - 10.5802/slsedp.91 LA - en ID - SLSEDP_2015-2016____A3_0 ER -
%0 Journal Article %A Serfaty, Sylvia %T Mean field limits for Ginzburg-Landau vortices %J Séminaire Laurent Schwartz — EDP et applications %Z talk:3 %D 2015-2016 %P 1-15 %I Institut des hautes des scientifiques & Centre de mathtiques Laurent Schwartz, ole polytechnique %U http://www.numdam.org/articles/10.5802/slsedp.91/ %R 10.5802/slsedp.91 %G en %F SLSEDP_2015-2016____A3_0
Serfaty, Sylvia. Mean field limits for Ginzburg-Landau vortices. Séminaire Laurent Schwartz — EDP et applications (2015-2016), Talk no. 3, 15 p. doi : 10.5802/slsedp.91. http://www.numdam.org/articles/10.5802/slsedp.91/
[ABO] Alberti, G.; Baldo, S.; Orlandi, G. Variational convergence for functionals of Ginzburg-Landau type. Indiana Univ. Math. J. 54 (2005), no. 5, 1411–1472.
[AGS] L. Ambrosio, N. Gigli, G. Savaré, Gradient flows in metric spaces and in the Wasserstein space of probability measures, Birkhäuser, (2005).
[AK] I. S. Aranson, L. Kramer, The world of the complex Ginzburg-Landau equation, Rev. Mod. Phys. 74 (2002), 99-143.
[AS] L. Ambrosio, S. Serfaty, A gradient flow approach to an evolution problem arising in superconductivity, Comm. Pure Appl. Math. 61 (2008), no. 11, 1495–1539.
[BBH] F. Bethuel, H. Brezis and F. Hélein, Ginzburg-Landau Vortices, Birkhäuser, (1994).
[BBM] J. Bourgain, H. Brezis, P. Mironescu, maps with values into the circle: minimal connections, lifting, and the Ginzburg-Landau equation. Publ. Math. Inst. Hautes Études Sci. 99 (2004), 1–115.
[BBO] F. Bethuel, H. Brezis, G. Orlandi, Asymptotics for the Ginzburg-Landau equation in arbitrary dimensions. J. Funct. Anal. 186 (2001), no. 2, 432–520.
[BDGSS] F. Bethuel, R. Danchin, P. Gravejat, J.C. Saut, D. Smets, Les équations d’Euler, des ondes et de Korteweg-de Vries comme limites asymptotiques de l’équation de Gross-Pitaevskii, séminaire E. D. P (2008-2009), Exp. I, École Polytechnique, 2010.
[BJS] F. Bethuel, R. L. Jerrard, D. Smets, On the NLS dynamics for infinite energy vortex configurations on the plane, Rev. Mat. Iberoam. 24 (2008), no. 2, 671–702.
[BOS1] F. Bethuel, G. Orlandi, D. Smets, Collisions and phase-vortex interactions in dissipative Ginzburg-Landau dynamics. Duke Math. J. 130 (2005), no. 3, 523–614.
[BOS2] F. Bethuel, G. Orlandi, D. Smets, Quantization and motion law for Ginzburg-Landau vortices. Arch. Ration. Mech. Anal. 183 (2007), no. 2, 315–370.
[BOS3] F. Bethuel, G. Orlandi, D. Smets, Dynamics of multiple degree Ginzburg-Landau vortices. Comm. Math. Phys. 272 (2007), no. 1, 229–261.
[BOS] F. Bethuel, G. Orlandi, D. Smets, Convergence of the parabolic Ginzburg-Landau equation to motion by mean curvature. Annals of Math,163 (2006), no. 1, 37–163.
[CDS] R. Carles, R. Danchin, J.-C. Saut, Madelung, Gross-Pitaevskii and Korteweg, Nonlinearity 25 (2012), no. 10, 2843–2873.
[CJ1] J. Colliander, R. L. Jerrard, Vortex dynamics for the Ginzburg-Landau-Schrödinger equation, Inter. Math. Res. Notices 7 (1998), 333–358.
[CJ2] J. Colliander, R. L. Jerrard, Ginzburg-Landau vortices: weak stability and Schrödinger equations dynamics, J. Anal. Math. 77, (1999), 129-205.
[CRS] S. J. Chapman, J. Rubinstein, M. Schatzman, A Mean-field Model of Superconducting Vortices, Eur. J. Appl. Math. 7, No. 2, (1996), 97–111.
[De] J.-M. Delort, Existence de nappes de tourbillon en dimension deux, JAMS 4 (1991), 553–586.
[DS] M. Duerinckx, S. Serfaty, in preparation.
[Du] M. Duerinckx, Well-posedness for mean-field evolutions arising in superconductivity, . | arXiv
[DZ] Q. Du, P. Zhang, Existence of weak solutions to some vortex density models. SIAM J. Math. Anal. 34 (2003), 1279–1299.
[E1] W. E, Dynamics of vortices in Ginzburg-Landau theories with applications to superconductivity, Phys. D, 77,(1994), 383-404.
[E2] W. E, Dynamics of vortex liquids in Ginzburg-Landau theories with applications to superconductivity, Phys. Rev. B, 50 (1994), No. 2, 1126–1135.
[J1] R. L. Jerrard, Lower Bounds for Generalized Ginzburg-Landau Functionals, SIAM Journal Math. Anal. 30, (1999), No. 4, 721–746.
[J2] R. L. Jerrard, Vortex filament dynamics for Gross-Pitaevsky type equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci (5) 1 (2002), 733–768.
[JS1] R. L. Jerrard, H.M. Soner, Dynamics of Ginzburg-Landau vortices, Arch. Rat. Mech. Anal. 142 (1998), No. 2, 99–125.
[JS2] R. L. Jerrard, H.M. Soner, The Jacobian and the Ginzburg-Landau functional, Calc. Var. PDE. 14, No 2, (2002), 151-191.
[JS] R. L. Jerrard, D. Smets, On the motion of a curve by its binormal curvature, Jour. Eur. Math. Soc. 17, (2015) no. 6, 1487-1515.
[JSp1] R. L. Jerrard, D. Spirn, Refined Jacobian estimates and Gross-Pitaevsky vortex dynamics. Arch. Rat. Mech. Anal. 190 (2008), no. 3, 425–475.
[JSp2] R. L. Jerrard, D. Spirn, Hydrodynamic limit of the Gross-Pitaevskii equation. Comm. PDE 40 (2015), no. 2, 135–190.
[KMMS] M. Kurzke, C. Melcher, R. Moser, D. Spirn, Dynamics for Ginzburg-Landau vortices under a mixed flow. Indiana Univ. Math. J. 58 (2009), no. 6, 2597–2621.
[KS1] M. Kurzke, D. Spirn, -stability and vortex motion in type II superconductors. Comm. PDE 36 (2011), no. 2, 256–292.
[KS2] M. Kurzke, D. Spirn, Vortex liquids and the Ginzburg-Landau equation. Forum Math. Sigma 2 (2014), e11, 63 pp.
[Li1] F. H. Lin, Some Dynamical Properties of Ginzburg-Landau Vortices, Comm. Pure Appl. Math. 49, (1996), 323-359.
[Li2] F. H. Lin, Vortex Dynamics for the Nonlinear Wave Equation, Comm. Pure Appl. Math., 52, (1999), 737-761.
[LR1] F.-H. Lin, T. Rivière, A quantization property for static Ginzburg-Landau vortices. Comm. Pure Appl. Math. 54 (2001), no. 2, 206–228.
[LR2] F.-H. Lin, T. Rivière, A quantization property for moving line vortices. Comm. Pure Appl. Math. 54 (2001), no. 7, 826–850.
[LX1] F. H. Lin, J. X. Xin, On the dynamical law of the Ginzburg-Landau vortices on the plane, Comm. Pure Appl. Math. 52 (1999), no. 10, 1189–1212.
[LX2] F. H. Lin, J. X. Xin, On the incompressible fluid limit and the vortex motion law of the nonlinear Schrödinger equation, Comm. Math. Phys. 200 (1999), no. 2, 249–274.
[LZ1] F. H. Lin, P. Zhang, On the hydrodynamic limit of Ginzburg-Landau vortices, Disc. Cont. Dyn. Systems 6 (2000), 121–142.
[LZ2] F. H. Lin, P. Zhang, Semi-classical Limit of the Gross-Pitaevskii Equation in an Exterior Domain, Arch. Rat. Mech. Anal. 179 (2005), 79–107.
[Mi] E. Miot, Dynamics of vortices for the complex Ginzburg-Landau equation. Anal. PDE 2 (2009), no. 2, 159–186.
[MZ] N. Masmoudi, P. Zhang, Global solutions to vortex density equations arising from sup-conductivity, Ann. Inst. H. Poincaré Anal. non linéaire 22, (2005), 441–458.
[O] F. Otto, The geometry of dissipative evolution equations: the porous medium equation, Comm. PDE 26, (2001), 101–174.
[PR] L. Peres, J. Rubinstein, Vortex Dynamics in Ginzburg-Landau models, Phys. D 64 (1993) 299-309.
[Ri] T. Rivière, Line vortices in the -Higgs model. it ESAIM Control Optim. Calc. Var. 1 (1995/1996), 77–167.
[RuSt] J. Rubinstein, P. Sternberg, On the slow motion of vortices in the Ginzburg-Landau heat flow, SIAM J. Math. Anal. 26, no 6 (1995), 1452–1466.
[Sa] E. Sandier, Lower Bounds for the Energy of Unit Vector Fields and Applications, J. Funct. Anal. 152 (1998), No. 2, 379–403.
[Sch] S. Schochet, The point vortex method for periodic weak solutions of the 2D Euler equations, Comm. Pure Appl. Math. 49 (1996), 911–965.
[Se0] S. Serfaty, Stability in 2D Ginzburg-Landau Passes to the Limit, Indiana Univ. Math. J., 54, No. 1, (2005), 199-222.
[Se1] S. Serfaty, Vortex collisions and energy-dissipation rates in the Ginzburg-Landau heat flow, part I: Study of the perturbed Ginzburg-Landau equation, JEMS 9, (2007), No 2, 177–217. part II: The dynamics, JEMS 9 (2007), No. 3, 383–426.
[Se2] S. Serfaty, Gamma-convergence of gradient flows on Hilbert and metric spaces and applications, Disc. Cont. Dyn. Systems, A 31 (2011), No. 4, 1427–1451.
[Se3] S. Serfaty, Mean Field Limits for the Gross-Pitaevskii and Parabolic Ginzburg-Landau Equations, to appear in JAMS.
[Sp1] D. Spirn, Vortex dynamics for the full time-dependent Ginzburg-Landau equations, Comm. Pure Appl. Math. 55 (2002), No. 5, 537–581.
[Sp2] D. Spirn, Vortex motion law for the Schrödinger-Ginzburg-Landau equations, SIAM J. Math. Anal. 34 (2003), no. 6, 1435–1476.
[SR] L. Saint Raymond, Hydrodynamic limits of the Boltzmann equation. Lecture Notes in Mathematics, 1971, Springer, (2009).
[SS1] E. Sandier, S. Serfaty, Global Minimizers for the Ginzburg-Landau Functional below the First Critical Magnetic Field, Annales IHP, Analyse non linéaire. 17 (2000), No. 1, 119–145.
[SS2] E. Sandier, S. Serfaty, Limiting Vorticities for the Ginzburg-Landau Equations, Duke Math. J. 117 (2003), No. 3, 403–446.
[SS3] E. Sandier, S. Serfaty, A product estimate for Ginzburg-Landau and corollaries, J. Func. Anal. 211 (2004), No. 1, 219–244.
[SS4] E. Sandier, S. Serfaty, Gamma-convergence of gradient flows with applications to Ginzburg-Landau, Comm. Pure Appl. Math. 57, No 12, (2004), 1627–1672.
[SS5] E. Sandier, S. Serfaty, Vortices in the Magnetic Ginzburg-Landau Model, Progress in Nonlinear Differential Equations and their Applications, vol 70, Birkhäuser, (2007).
[ST2] S. Serfaty, I. Tice, Ginzburg-Landau vortex dynamics with pinning and strong applied currents, Arch. Rat. Mech. Anal. 201 (2011), No. 2, 413–464.
[SV] S. Serfaty, J. L. Vazquez, A Mean Field Equation as Limit of Nonlinear Diffusions with Fractional Laplacian Operators, Calc Var. PDE 49 (2014), no. 3-4, 1091–1120.
[T] M. Tinkham, Introduction to Superconductivity, 2d edition, McGraw-Hill, (1996).
[Ti] I. Tice, Ginzburg-Landau vortex dynamics driven by an applied boundary current, Comm. Pure Appl. Math. 63 (2010), no. 12, 1622–1676.
[TT] J. Tilley, D. Tilley, Superfluidity and superconductivity Second edition. Adam Hilger, 1986.
[Yau] H. T. Yau, Relative entropy and hydrodynamics of Ginzburg-Landau models. Lett. Math. Phys. 22 (1991), 63–80.
Cited by Sources: